APPLICATION OF THE MACHINE LEARNING IN SURFACE WATER QUALITY ASSESSMENT

XIV International Conference on Industrial Engineering and Environmental Protection – IIZS 2024, str. 388-395

 

АУТОР / AUTHOR(S): Jelena Antović , Katarina Batalović , Ivana Mihajlović 

Download Full Pdf    

DOI: 10.46793/IIZS24.388A

САЖЕТАК / ABSTRACT:

This paper provides a comprehensive review of the existing literature on the application of machine learning (ML) in surface water quality assessment. The focus is on analyzing contemporary research that explores how ML models enable a deeper understanding of complex relationships between biological, physical, and chemical parameters through the processing of large datasets. The review covers key challenges, advantages, and limitations of ML techniques in comparison to traditional methods, with particular emphasis on the accuracy of pollutant identification and the prediction of changes in water quality. The paper offers a critical overview of current studies and provides guidance for future research and applications of machine learning in this field.

КЉУЧНЕ РЕЧИ / KEYWORDS:

machine learning, surface water monitoring, machine learning algorithms, artificial intelligence.

ЛИТЕРАТУРА / REFERENCES:

  • [1] Shah, M. I., Alaloul, W., & Alqahtani, A. Predictive modeling approach for surface water quality: Development and comparison of machine learning models, Sustainability, Vol. 13, No. 14, 7515, 2021.
  • [2] Krtolica, I., Cvijanović, D., Obradović, Đ., Novković, M., Milošević, D., Savić, D., & Radulović, S. Water quality and macrophytes in the Danube River: Artificial neural network modelling, Ecological Indicators, Vol. 121, 107076, 2021.
  • [3] Wang, R. Z., Kim, J. H., & Lee, M. H. Water quality prediction of streams under various urban development pattern scenarios with an interpretable machine learning approach, Science of the Total Environment, Vol. 761, Article 144057, 2021.
  • [4] Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. A review of the application of machine learning in water quality evaluation, Eco-environment & Health, Vol. 1, No. 2, pp. 107-116, 2022. https://doi.org/10.1016/j.eehl
  • [5] Sharma, N., Sharma, R., & Jindal, N. Machine Learning and Deep Learning Applications-A Vision. Global Transitions Proceedings, 2(1), 24-28. 2023.
  • [6] Tiyasha, T., Tung, T. M., & Yaseen, Z. M. A survey on river water quality modelling using artificial intelligence models: 2000–2020, Journal of Hydrology, Vol. 585, 124670.
  • [7] Jayaraman, P., Nagarajan, K. K., & Partheeban, P. Critical review on water quality analysis using IoT and machine learning models, International Journal of Information Management Data Insights, Vol. 4, 100210, 2024.
  • [8] Cojbasic, S., Dmitrasinovic, S., Kostic, M., Sekulic, M. T., Radonic, J., Dodig, A., & Stojkovic, M. Application of machine learning in river water quality management: A review, Water Science & Technology, Vol. 88, No. 9, pp. 2297–2308, 2023. https://doi.org/10.2166/wst.2023.33.
  • [9] Kedam, N., Tiwari, D. K., Kumar, V., Khedher, K. M., & Salem, M. A. River stream flow prediction through advanced machine learning models for enhanced accuracy, Results in Engineering, Vol. 22, 102215, 2024.
  • [10] Zhong, S., Zhang, K., Bagheri, M., Burken, J., Gu, A., Li, B., Ma, X., Marrone, B., Ren, Z., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B., Xiao, X., Yu, X., Zh, J., & Zhang, H. (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19), 12741–12754. doi:10.1021/acs.est.1c01339.
  • [11] Ahmed, A., Othman, F., Afan, H. A., Ibrahim, R. K., Chow, M. F., Hossain, S., Ehteram, M., & El-Shafie, A. Machine learning methods for better water quality prediction, Journal of Hydrology, Vol. 578, 124084, 2019. https://doi.org/10.1016/j.jhydrol.2019.124084.
  • [12] Lamare, R. E., & Singh, O. P. Application of CCME water quality index in evaluating the water quality status in limestone mining area, 10, pp. 149–154, 2016.
  • [13] Shakhari, S., & Banerjee, I. A multi-class classification system for continuous water quality monitoring, Heliyon, Vol. 5, e01822, 2019. Available at: https://www.elsevier.com/locate/heliyon..
  • [14] Liu, P., Wang, J., Sangaiah, A., Xie, Y., & Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment, Sustainability, Vol. 11, 2058, 2019.
  • [15] Aldhyani, T. H. H., Al-Yaari, M., Alkahtani, H., & Maashi, M. Water quality prediction using artificial intelligence algorithms, Applied Bionics and Biomechanics, 2020.
  • [16] Uddin, M. G., Nash, S., & Olbert, A. I. A review of water quality index models and their use for assessing surface water quality, Ecological Indicators, Vol. 122, 107218, 2021. https://doi.org/10.1016/j.ecolind.2020.107218.
  • [17] Dohare, D., Deshpande, S., & Kotiya, A. Analysis of ground water quality parameters: A review. Research Journal of Engineering Sciences, 3, 2278-9472. Available at: www.isca.me, 2014.
  • [18] Lin, Z. Y., Lim, J. Y., & Oh, J. M. (2024). Innovative interpretable AI-guided water quality evaluation with risk adversarial analysis in river streams considering spatial-temporal effects. Environmental Pollution, 350, 124015.
  • [19] Venkatachalam, P., & Ray, S. How do context-aware artificial intelligence algorithms used in fitness recommender systems? A literature review and research agenda. International Journal of Information Management Data Insights, 2, Article 100139, 2022. https://doi.org/10.1016/j.jjimei.2022.100139
  • [20] Pasika, S., & Gandla, S. T. Smart water quality monitoring system with cost-effective using IoT, Heliyon, Vol. 6, 2020.
  • [21] Kalini, Z. A SEM-neural network approach for predicting antecedents of m-commerce acceptance, International Journal of Information Management, Vol. 37, pp. 14–24, 2017.
  • [22] Yan, X., Zhang, T., Du, W., Meng, Q., Xu, X., & Zhao, X. A comprehensive review of machine learning for water quality prediction over the past five years, Journal of Marine Science and Engineering, 12(1), 159. 2023. https://doi.org/10.3390/jmse12010159.
  • [23] Akbulut, U., Akif Cifci, M., Isler, B., & Aslan, Z. Comparison of different machine learning techniques in river flow prediction, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol. 40, No. 1, pp. 467-485, 2025.
  • [24] Hassan, M. M., Hassan, M. M., Akter, L., Rahman, M. M., Zaman, S., Hasib, K. M., Jahan, N., Smrity, R. N., Farhana, J., Raihan, M., & Mollick, S. Efficient prediction of water quality index (WQI) using machine learning algorithms, Human-Centric Intelligent Systems, Vol. 1, pp. 86, 2021.
  • [25] Shamsuddin, I. I. S., Othman, Z., & Sani, N. F. M. Water quality index classification based on machine learning: A case from the Langat River Basin Model, Water, Vol. 14, No. 19, 2939, 2022. https://doi.org/10.3390/w14192939