GLAUCONY DEPOSITS AND THEIR IMPACT ON GEOTECHNICAL DESIGN

Geotehnički aspekti građevinarstva i zemljotresno inženjerstvo 2025, Vrnjačka Banja, 15 – 17. oktobar 2025. (pp. 227-236) 

АУТОР(И) / AUTHOR(S): Predrag Tošović Ken Vinck

Download Full Pdf   

DOI: 10.46793/GEOAG25.227T

САЖЕТАК / ABSTRACT:

The offshore wind industry has rapidly expanded globally, necessitating advanced in-situ and laboratory characterisation of new soil deposits. Among these, glaucony poses particular challenges for geotechnical engineering, especially for monopile installation and performance along the East Coast of the United States. These green sand deposits are highly susceptible to particle crushing, leading to a transition from a coarse-grained, stiff, and permeable material to a fine-grained, cohesive, clay-like soil of low permeability. Crushing typically occurs beneath the pile tip during driving, and evidence from driving logs and cone penetration tests indicates a high risk of premature pile refusal, driven by a substantial increase in shaft friction caused by the reworked material. Glaucony is composed predominantly of glauconite, a 2:1 interlayer-deficient mica that forms on a host material and gradually replaces it. During maturation, its physico-chemical properties evolve, altering its geotechnical behaviour. However, the mechanisms underlying these behaviours remain poorly understood, and research on this material is scarce. This paper presents a summary of a Master’s thesis undertaken at Imperial College London, UK, including a literature review of glaucony and its implications for offshore geotechnical practice.

КЉУЧНЕ РЕЧИ / KEYWORDS:

Glaucony, glaucony sand, offshore wind, monopile, foundations

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

REFERENCES / ЛИТЕРАТУРА:                

[1]        Amorosi Alessandro: Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research, Sedimentary Geology, 1997., 135–153.

[2]        Amorosi Alessandro, Sammartino Irene and Tateo Fabio: Evolution patterns of glaucony maturity: A mineralogical and geochemical approach, Deep Sea Research Part II: Topical Studies in Oceanography, 2007., 1364.

[3]        Banerjee Santanu, Bansal Udita, Pande Kanchan and Meena S. S.: Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation, Sedimentary Geology, 2016., 12–29.

[4]        Banerjee Santanu, Choudhury Tathagata R., Saraswati Pratul K. and Khanolkar Sonal: The formation of authigenic deposits during Paleogene warm climatic intervals: a review, Journal of Palaeogeography, Singapore, 2020., 1–27.

[5]        Bellotti Roberto, Fretti Carmelo, Ghionna Vito N. and Pedroni S.: Compressibility and Crushability of Sands at High Stresses, Proceedings of the First International Symposium on Calibration Chamber Testing, New York, 1991., 79–90.

[6]        De Nijs Richard&nbsp, Kaalberg Frank, Osselaer Gert, Couck Jan and Van Royen Kristof: Full-scale field test (sheet) pile drivability in Antwerp (Belgium), 2015.

[7]        Degroot Dom, Westgate Zachary J. and Yetginer-Tjelta Tor I.: Geological and Geotechnical Challenges of the East Coast United States for Offshore Energy Transition, 2023.

[8]        Fernández-Landero Sandra and Fernández-Caliani Juan C.: Mineralogical and Crystal-Chemical Constraints on the Glauconite-Forming Process in Neogene Sediments of the Lower Guadalquivir Basin (SW Spain), Minerals, 2021.

[9]        Huggett Jennifer M. and Gale Andy S.: Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK, Journal of the Geological Society, 1997., 897–912.

[10]      Joustra K. and De Gijt Jarit G.: Results and interpretation of cone penetration results in soils with different mineralogic composition, 1985.

[11]      Konstantinou M., Piedrabuena A. R., Hellebrekers N., Elkadi A. S., Mento M. and Gavin K.: Geotechnical Properties of a Glauconite Sand from Belgium, 2025.

[12]      Long Xiaoyan, Tucker Greg, Gibbs Paul, Westgate Zachary, Diaz Alberto T. and Senanayake Asitha: Soil Classification and Evaluation of Preconsolidation Stress of Atlantic Outer Continental Shelf OCS Sediments from Oedometer and Cone Penetration Testing, 2019.

[13]      Natkaniec-Nowak Lucyna, Piestrzyński Adam, Wagner Marian, Heflik Wiesław, Naglik Beata, Paluch Jan, Pałasz Krzysztof, Milovská Stanislava and Stach Paweł: „Górka Lubartowska-Niedźwiada” deposit (E Poland) as a potential source of glauconite raw material, Gospodarka Surowcami Mineralnymi, 2019., 5–30.

[14]      Odin Gilles S. and Fullagar Paul D.: Green Marine Clays, Amsterdam, Netherlands, 1988., 295–332.

[15]      Odin Gilles S. and Matter Albert: De glauconiarum origine, Sedimentology, Oxford, UK, 1981., 611–641.

[16]      Peralta P., Vembu K. and Esmailzadeh S.: The yield strength and compressibility of glauconitic sands in the U.S. Atlantic Outer Continental Shelf, 2025.

[17]      Perikleous Georgios, Meissl Sandra, Troya Diaz Alberto, Stergiou Themis and Ridgway-Hill Alice: Monopile Installation in Glauconitic Sands, 2023.

[18]      Pestitschek Brigitte, Gier Susanne, Essa Mahmoud and Kurzweil Hans: Effects of Weathering on Glauconite: Evidence from The Abu Tartur Plateau, Egypt, Clays and Clay Minerals, 2012., 76–88.

[19]      Pisanò F., Westgate Z., Rahim A., Maldonado C., Komurka V., Beemer R., Stuyts B., Hamre L., Eiksund G., Liedtke E., Perikleous Y., Ridgway-Hill A., De Sordi J., Roux A., Jones L. and Ghasemi P.: The Piling in Glauconitic Sands (PIGS) JIP: Reducing Geotechnical Uncertainty for U.S. Offshore Wind Development, Conference Proceedings of the Fifth International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Université Gustave Eiffel, 2025., 1280–1288.

[20]      Tribovillard Nicolas, Bout-Roumazeilles Viviane, Abraham Romain, Ventalon Sandra, Delattre Marion and Baudin François: The contrasting origins of glauconite in the shallow marine environment highlight this mineral as a marker of paleoenvironmental conditions, Comptes Rendus. Géoscience, 2023., 213–228.

[21]      Westgate Zachary J., Christopher McMullin, Danilo Zeppilli, Ryan Beemer and DeGroot Don J.: Geological and Geotechnical Characteristics of Glauconitic Sands, 2022., 113–121.

[22]      Westgate Zachary J., DeGroot Don J., McMullin Christopher, Zou Yuanjing, Guo Dongdong, Van Haren Simon, Beemer Ryan D., Zeppilli Danilo, Miller Kenneth G. and Browning James V.: Effect of degradation on geotechnical behavior of glauconite sands from the U.S. Mid-Atlantic Coastal Plain, Ocean Engineering, 2023.

[23]      Westgate Zachary, Degroot D., Zhang G., Beemer R., Miller K., Browning J., Coffman R., Senanayake A. and Maldonado C.: The Piling in Glauconitic Sand (PIGS) JIP: insights from site characterisation and laboratory testing, 2025.

[24]      Westgate Zack, McMullin Chris and DeGroot Don: Glauconite Sand Challenges for US Offshore Wind Development, 2022.

[25]      Zeppilli Danilo, Dennis Emma, Westgate Zachary, Zhang Guoping, Don DeGroot, Miller Kenneth, Browning James and Beemer Ryan: Atterberg Limits of Two Crushed and Natural Glauconite Soils, 2024., 177–186.

[26]      Zou Yuanjing, Degroot Don J. and Westgate Zachary J.: Direct and Interface Shear Behavior of an Authigenic Glauconite Sand from the Coastal Plain of New Jersey, Journal of Geotechnical and Geoenvironmental Engineering, 2025.