MODELIRANJE STRUKTURE I ANIZOTROPIJE PREKONSOLIDOVANIH GLINA SA KORIŠĆENJEM SA BRICK MODELA

Geotehnički aspekti građevinarstva i zemljotresno inženjerstvo 2025, Vrnjačka Banja, 15 – 17. oktobar 2025.  (pp. 28-56) 

 

АУТОР(И) / AUTHOR(S): Vojkan Jovičić , Nina Jurečič, Gregor Vilhar

 

Download Full Pdf   

DOI: 10.46793/GEOAG25.028J

САЖЕТАК / ABSTRACT:

Više konstitutivnih modela ponašanja tla je razvijeno kako bi se obuhvatile glavne karakteristike mehaničkog ponašanja prekonsolidovanih glina, kao što su nelinearni odnos napona i deformacije pri malim i velikim deformacijama, kao i efekat istorije opterećenja. Kinematički modeli učvršćivanja uključuju ove karakteristike kako bi omogućili realistična predviđanja interakcije konstrukcije i tla. U radu je prikazan nastavak razvoja kinematičkog konstitutivnog  modela BRICK, sa ciljem uključivanja modeliranja anizotropije i uticaja strukture tla na mehaničko ponašanje prekonsolidovanih glina. Laboratorijski testovi visokog kvaliteta na Londonskoj glini su korišteni za kalibraciju ulaznih parametara modela na osnovu ponašanja  laboratorijskog uzorka, a dokumentovan granični problem iskopa tunela korišćen je za validaciju modela u proračunima sa upotrebom metode konačnih elemenata. Sprovedena je sveobuhvatna komparativna studija između predviđanja različitih kinematičkih modela sa učvršćivanjem, koristeći dva različita softverska paketa. Uočeno je da su rezultati predviđanja sa SA_BRICK modelom u dobrom saglasju sa podacima dobijenim iz osmatranja, kao i to da SA_BRICK model daje unapređena predviđanja u poređenju sa drugim kinematičkim modelima učvršćivanja, naročito u pogledu širine profila sleganja neposredno iznad tunela. Napredna predviđanja deformacija tla izazvanih iskopom tunela mogu se efikasno koristiti za ublažavanje mogućih oštećenja nadzemnih konstrukcija koje su u zoni uticaja gradnje tunela u urbanom okruženju.

КЉУЧНЕ РЕЧИ / KEYWORDS:

konstitutivno modeliranje, prekonsoldivane gline, kinematičko učvršćivanje, numeričke analize, iskop tunela

ПРОЈЕКАТ / ACKNOWLEDGEMENT:              

REFERENCES / ЛИТЕРАТУРА:                  

[1]        B. Simpson, N. J. O’Riordan, and D. D. Croft, “A computer model for the analysis of ground movements in London Clay,” Géotechnique, vol. 29, no. 2, pp. 149–175, Jun. 1979, doi: 10.1680/geot.1979.29.2.149.

[2]        R. J. Jardine, D. M. Potts, A. B. Fourie, and J. B. Burland, “Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction,” Géotechnique, vol. 36, no. 3, pp. 377–396, Sep. 1986, doi: 10.1680/geot.1986.36.3.377.

[3]        Z. Mroz, V. A. Norris, and O. C. Zienkiewicz, “An anisotropic hardening model for soils and its application to cyclic loading,” Int. J. Numer. Anal. Methods Geomech., vol. 2, no. 3, pp. 203–221, Jul. 1978, doi: 10.1002/nag.1610020303.

[4]        Y. F. and H. Dafalias, “A bounding surface soil plasticity model,” in International Symposium on Soils under Cyclic and Transient Loading, 1980, p. vol.1 pp. 335-345.

[5]        D. Al-Tabbaa, A. and Muir Wood, “An experimental based ‘bubble’ model for clay,” in Proceedings of International Conference on Numerical Models in Geomechanics (Pietruskzczak A and Pande GN (eds))., 1989, pp. 91–99.

[6]        J. H. Atkinson, D. Richardson, and S. E. Stallebrass, “Effect of recent stress history on the stiffness of overconsolidated soil,” Géotechnique, vol. 40, no. 4, pp. 531–540, Dec. 1990, doi: 10.1680/geot.1990.40.4.531.

[7]        S. E. Stallebrass and R. N. Taylor, “The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay,” Géotechnique, vol. 47, no. 2, pp. 235–253, Apr. 1997, doi: 10.1680/geot.1997.47.2.235.

[8]        B. Simpson, “Retaining structures: displacement and design,” Géotechnique, vol. 42, no. 4, pp. 541–576, Dec. 1992, doi: 10.1680/geot.1992.42.4.541.

[9]        F. Cotecchia and R. J. Chandler, “A general framework for the mechanical behaviour of clays,” Géotechnique, vol. 50, no. 4, pp. 431–447, Aug. 2000, doi: 10.1680/geot.2000.50.4.431.

[10]      S. Leroueil and P. R. Vaughan, “The general and congruent effects of structure in natural soils and weak rocks,” Géotechnique, vol. 40, no. 3, pp. 467–488, 1990, doi: 10.1680/geot.1990.40.3.467.

[11]      A. G. Kavvadas, M. & Anagnostopoulos, “A framework for the mechanical behaviour of structured soils,” in Proc. 2nd Intern. Symp. on the Geotechnics of Hard Soils – Soft Rocks, Napoli, 1998, p. pp 603-614.

[12]      M. Kavvadas and A. Amorosi, “A constitutive model for structured soils,” Géotechnique, vol. 50, no. 3, pp. 263–273, 2000.

[13]      B. Baudet and S. Stallebrass, “A constitutive model for structured clays,” Géotechnique, vol. 54, no. 4, pp. 269–278, May 2004, doi: 10.1680/geot.2004.54.4.269.

[14]      A. Gajo and D. Muir Wood, “A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour,” Int. J. Numer. Anal. methods Geomech., vol. 25, no. 3, pp. 207–241, 2001.

[15]      V. Vukadin, Development of a constitutive material model for soft rocks and hard soils. PhD thesis. Ljubljana: University of Ljubljana, 2004.

[16]      V. Vukadin and V. Jovičić, “S_BRICK: a constitutive model for soils and soft rocks,” Acta Geotech. Slov., vol. 15, no. 2, pp. 16–37, Dec. 2018, doi: 10.18690/actageotechslov.15.2.16-37.2018.

[17]      K. C. Ellison, K. Soga, and B. Simpson, “An examination of strain space versus stress space for the formulation of elastoplastic constitutive models,” in Proc. 7th European Conference on Numerical Methods in Geotechnical Engineering, 2010, pp. 33–38.

[18]      A. Gasparre, S. Nishimura, M. R. Coop, and R. J. Jardine, “The influence of structure on the behaviour of London Clay,” Géotechnique, vol. 57, no. 1, pp. 19–31, Feb. 2007, doi: 10.1680/geot.2007.57.1.19.

[19]      R. Brinkgreve, S. Kumarswamy, W. Swolfs, L. Zampich, and N. Ragi Manoj, Plaxis finite element code for soil and rock analyses. Plaxis BV, Bentley Systems, Incorporated, Philadelphia. 2019.

[20]      R. J. Nyren, J. R. Standing, and J. B. Burland, “25 Surface displacements at St James’s Park greenfield reference site above twin tunnels through the London Clay,” in Building response to tunnelling, Thomas Telford Publishing, 2001, pp. 387–400.

[21]      R. Jardine, A. Brosse, M. Coop, and R. H. Kamal, “Shear strength and stiffness anisotropy of geologically aged stiff clays,” in Advances in Soil Mechanics and Geotechnical Engineering, 2015, pp. 156–191.

[22]      A. Fonseca, C. Ferreira, M. Soares, and A. Klar, “Improved laboratory techniques for advanced geotechnical characterization towards matching in situ properties,” in Advances in Soil Mechanics and Geotechnical Engineering, 2015, pp. 231–263.

[23]      M. F. Hasan, H. Abuel-Naga, and E.-C. Leong, “A modified series-parallel electrical resistivity model of saturated sand/clay mixture,” Eng. Geol., vol. 290, p. 106193, Sep. 2021, doi: 10.1016/j.enggeo.2021.106193.

[24]      L. Lu, S. Li, Y. Gao, Y. Ge, and Y. Zhang, “Analysis of the Characteristics and Cause Analysis of Soil Salt Space Based on the Basin Scale,” Appl. Sci., vol. 12, no. 18, p. 9022, Sep. 2022, doi: 10.3390/app12189022.

[25]      J. Zhang et al., “Anisotropic Shear Strength Behavior of Soil–Geogrid Interfaces,” Appl. Sci., vol. 11, no. 23, p. 11387, Dec. 2021, doi: 10.3390/app112311387.

[26]      D. W. Hight, F. McMillan, J. J. M. Powell, R. J. Jardine, and C. P. Allenou, “Some characteristics of London Clay,” in Characterisation and Engineering Properties of Natural Soils – Tan et al. (eds.), 2003, pp. 851–907.

[27]      J. R. Standing and J. B. Burland, “Unexpected tunnelling volume losses in the Westminster area, London,” Géotechnique, vol. 56, no. 1, pp. 11–26, Feb. 2006, doi: 10.1680/geot.2006.56.1.11.

[28]      A. Gasparre, S. Nishimura, N. A. Minh, M. R. Coop, and R. J. Jardine, “The stiffness of natural London Clay,” Géotechnique, vol. 57, no. 1, pp. 33–47, Feb. 2007, doi: 10.1680/geot.2007.57.1.33.

[29]      J. H. Atkinson, “Anisotropic elastic deformations in laboratory tests on undisturbed London Clay,” Géotechnique, vol. 25, no. 2, pp. 357–374, 1975, doi: 10.1680/geot.1975.25.2.357.

[30]      S. Nishimura, R. J. Jardine, and N. A. Minh, “Shear strength anisotropy of natural London Clay,” in Stiff Sedimentary Clays, Thomas Telford Ltd, 2011, pp. 97–110.

[31]      K. K. Sorensen, B. A. Baudet, and B. Simpson, “Influence of strain rate and acceleration on the behaviour of reconstituted clays at small strains,” Géotechnique, vol. 60, no. 10, pp. 751–763, Oct. 2010, doi: 10.1680/geot.07.D.147.

[32]      H.-C. Yeow and M. R. Coop, “The constitutive modelling of London Clay,” Proc. Inst. Civ. Eng. – Geotech. Eng., vol. 170, no. 1, pp. 3–15, Feb. 2017, doi: 10.1680/jgeen.15.00146.

[33]      B. Simpson, J. H. Atkinson, and V. Jovičić, “The influence of anisotropy on calculations of ground settlements above tunnels,” in Geotechnical Aspects of Undrground Construction in Soft Ground, Mair & Taylor (eds), 1996, pp. 591–594.

[34]      V. Jovičić and M. R. Coop, “The Measurement of Stiffness Anisotropy in Clays with Bender Element Tests in the Triaxial Apparatus,” Geotech. Test. J., vol. 21, no. 1, 1998.

[35]      A. Grammatikopoulou, L. Zdravkovic, and D. M. Potts, “The effect of the yield and plastic potential deviatoric surfaces on the failure height of an embankment,” Géotechnique, vol. 57, no. 10, pp. 795–806, Dec. 2007, doi: 10.1680/geot.2007.57.10.795.

[36]      V. Jovičić, M. Coop, and B. Simpson, “Interpretation and modelling of deformation characteristics of a stiff North Sea clay,” Can. Geotech. J., vol. 43, no. 4, 2006, doi: 10.1139/t06-007.

[37]      M. Lehane and B. Simpson, “Modelling glacial till under triaxial conditions using a BRICK soil model,” Can. Geotech. J., no. 37, pp. 1078–1088, 2000.

[38]      S. Clarke and C. Hird, “Modelling of viscous effects in natural clays,” Can. Geotech. J., vol. 49, no. 2, pp. 129–140, 2012, doi: 10.1139/t11-084.

[39]      A. . Tuxworth, Recent stress history effects in clays and associated improvements to the BRICK model. PhD Thesis. The University of Sheffield, UK. The University of Sheffield, UK, 2014.

[40]      M. Cudny and E. Partyka, “Influence of anisotropic stiffness in numerical analyses of tunneling and excavation problems in stiff soils,” in : Lee W, Lee J-S, Kim H-K, Kim D-S (eds) Proceedings of the 19th international conference on soil mechanics and geotechnical engineering, 2017, p. pp 719–722.

[41]      M. Cudny and A. Truty, “Refinement of the Hardening Soil model within the small strain range,” Acta Geotech., vol. 15, no. 8, pp. 2031–2051, 2020, doi: 10.1007/s11440-020-00945-5.

[42]      J. Wongsaroj, K. Soga, S. Yimsiri, and R. J. Mair, “Stiffness anisotropy of London Clay and its modelling: Laboratory and Field,” in Advances in geotechnical engineering: The Skempton conference, pp. 1205–1216.

[43]      A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, Cambridge. 1927.

[44]      K. C. Ellison, K. Soga, and B. Simpson, “A strain space soil model with evolving stiffness anisotropy,” Géotechnique, vol. 62, no. 7, pp. 627–641, Jul. 2012, doi: 10.1680/geot.10.P.095.

[45]      K. C. Ellison, Constitutive Modelling of a Heavily Overconsolidated Clay. PhD thesis, University of Cambridge. 2012.

[46]      G. Vilhar, N. Jurečič, and V. Jovičić, “NAPgeo – Programsko orodje za implementacijo in uporabo novih konstitutivnih modelov za numerične analize z metodo končnih elementov (In Slovenian),” in Zbornik radova 6. Posvetovanje slovenskih geotehnikov, Lipica, 2012, pp. 241–248.

[47]      A. Gasparre, Advanced laboratory characterisation of London Clay. Ph.D Thesis, Imperial College, London. 2005.

[48]      S. Nishimura, Laboratory study on anisotropy of natural London Clay. Ph.D. Thesis, Imperial College London, London, UK. 2006.

[49]      J. Burland and J. Kalra, “Queen Elizabeth II Conference Centre: Goetechnical Aspects,” Proc. Inst. Civ. Eng., vol. 80, no. 6, pp. 1479–1503, Dec. 1986, doi: 10.1680/iicep.1986.527.

[50]      D. M. Potts and L. Zdravković, Finite Element Analysis in Geotechnical Engineering: Volume two – Application. Thomas Telford Publishing, 2001.

[51]      A. Grammatikopoulou, Development, implementation and application of kinematic hardening models for overconsolidated clays. Ph.D. Thesis, Imperial College, London. 2004.

[52]      N. Jurečič, L. Zdravković, and V. Jovičić, “Predicting ground movements in London Clay,” Proc. Inst. Civ. Eng. Geotech. Eng., vol. 166, no. 5, 2013, doi: 10.1680/geng.11.00079.

[53]      Y. Fang, J. Cui, D. Wanatowski, N. Nikitas, R. Yuan, and Y. He, “Subsurface settlements of shield tunneling predicted by 2D and 3D constitutive models considering non-coaxiality and soil anisotropy: a case study,” Can. Geotech. J., vol. 59, no. 3, pp. 424–440, Mar. 2022, doi: 10.1139/cgj-2020-0620.

[54]      Y. Li, W. Zhang, and R. Zhang, “Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy,” Acta Geotech., vol. 17, no. 2, pp. 563–575, Feb. 2022, doi: 10.1007/s11440-021-01171-3.

[55]      D. M. Potts and T. Addenbrooke, “A structure’s influence on tunelling induced ground movements,” Proc. Inst. Civ. Eng. – Geotech. Eng., vol. 125, no. 2, pp. 109–125, Apr. 1997, doi: 10.1680/igeng.1997.29233.

[56]      J. N. Franzius, D. M. Potts, and J. B. Burland, “The influence of soil anisotropy and K 0 on ground surface movements resulting from tunnel excavation,” Géotechnique, vol. 55, no. 3, pp. 189–199, Apr. 2005, doi: 10.1680/geot.2005.55.3.189.

[57]      P. W. Mayne and F. H. Kulhawy, “K0–OCR relationships in soil,” J. Geotech. Eng. Div., vol. 108, no. 6, pp. 851–872, 1982.

[58]      D. A. Barratt and R. G. Tyler, “Measurements of ground movements and lining behaviour on the London Underground at Regent’s Park, TRRL Report 684. Crowthorne: Transport and Road Research Laboratory.,” 1975.

[59]      C. Dai, H. Sui, and C. Ma, “Study on the Ultimate Supporting Force of Shield Excavation Face Based on Anisotropic Strength Theory,” Appl. Sci., vol. 10, no. 15, p. 5222, Jul. 2020, doi: 10.3390/app10155222.

[60]      J. B. Burland, “Assesment of risk of damage to buildings due to tunneling and excavations,” in Proc. 1st Int. Conf. Earthquake Geotech. Engrg. IS-Tokyo’, 1995, pp. 1189–1201.

[61]      B. R. Peck, “DEEP EXCAVATIONS AND TUNNELING IN SOFT GROUND,” in 7th International Conference on Soil Mechanics and Foundation Engineering (Mexico), 1969, pp. 225–290.

[62]      T. W. Lambe, “Predictions in soil engineering,” Géotechnique, vol. 23, no. 2, pp. 151–202, 1973, doi: 10.1680/geot.1973.23.2.151.

[63]      N. Jurečič, Modeliranje obnašanja prekonsolidiranih in strukturiranih zemljin z modeli s kinematičnim utrjevanjem. PhD Thesis (in Slovenian), University of Ljubljana. 2013.

[64]      N. Jurečič, G. Vilhar, and J. V., “Comparative analysis of settlements of an embankment on Pappadai clay,” in Proceedings of the 15th Danube – European Conference on Geotechnical Engineering, Vienna, Austria, 2014, pp. 711–717.