Geotehnički aspekti građevinarstva i zemljotresno inženjerstvo 2025, Vrnjačka Banja, 15 – 17. oktobar 2025. (pp. 1-6)
АУТОР(И) / AUTHOR(S): Boris Jeremić 
Download Full Pdf 
DOI: 10.46793/GEOAG25.001J
САЖЕТАК / ABSTRACT:
Engineers play a vital role in the development and maintenance of the built environment. Through engineering analysis, they design and assess infrastructure systems to enhance safety, performance, and long-term economic value. When bridges, buildings, power plants and dams are designed, constructed, and maintained to endure for long time, the benefits to society are substantial.
Modern engineering analysis must account for uncertainties in infrastructure response, which stem from two principal sources: epistemic uncertainty, arising from simplifications in modeling, and aleatory uncertainty, due to variability in loads and material behavior.
This work presents a brief overview of work on addressing both types of uncertainty in engineering analysis. Epistemic uncertainty is addressed by constructing a hierarchy of analytical and numerical models with increasing levels of fidelity. This approach enables the quantification of the impact of modeling assumptions, simplifications, and helps reduce their influence on analysis results.
Aleatory uncertainty is treated through the development of a Stochastic Elastic-Plastic Finite Element Method (SEPFEM). This method enables both forward and backward prop- agation of uncertainty. Forward propagation yields full probabilistic distribution functions (PDF) and cumulative distribution functions (CDF)/fragilities for displacements, forces, stresses, and strains by accounting for variability in input loads and material properties. Backward propagation, or global sensitivity analysis, identifies how uncertainties in inputs affect the uncertainties of key response variables such as displacements and accelerations.
Illustrative examples are presented to demonstrate the application of the developed methods and analysis techniques.
КЉУЧНЕ РЕЧИ / KEYWORDS:
FEM analysis, Soils, Structures, Interaction, Epistemic and Aleatory Uncertainty
ПРОЈЕКАТ / ACKNOWLEDGEMENT:
REFERENCES / ЛИТЕРАТУРА:
- K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice Hall Inc., 1996. ISBN 0-13- 301458-4.
- M. A. Crisfield. Non–Linear Finite Element Analysis of Solids and Structures Volume 1: Essentials. John Wiley and Sons, Inc. New York, 605 Third Avenue, New York, NY 10158–0012, USA, 1991.
- M. A. Crisfield. Non–Linear Finite Element Analysis of Solids and Structures Volume 2: Advanced Topics.
- John Wiley and Sons, Inc. New York, 605 Third Avenue, New York, NY 10158–0012, USA, 1997.
- C. S. Desai and H. J. Siriwardane. Constitutive Laws for Engineering Materials With Emphasis on Geologic Materials. Prentice–Hall, Inc. Englewood Cliffs, NJ 07632, 1984.
- B. Jeremić, Z. Yang, Z. Cheng, G. Jie, N. Tafazzoli, M. Preisig, P. Tasiopoulou, F. Pisan`o, J. Abell, Watanabe, Y. Feng, S. K. Sinha, F. Behbehani, H. Yang, H. Wang, and K. D. Staszewska. Nonlinear Finite Elements: Modeling and Simulation of Earthquakes, Soils, Structures and their Interaction. Self- Published-Online, University of California, Davis, CA, USA, 1989-2025. ISBN 978-0-692-19875-9. URL: http://sokocalo.engr.ucdavis.edu/~jeremic/LectureNotes/.
- B. Jeremić, K. Sett, and M. L. Kavvas. Probabilistic elasto-plasticity: formulation in 1D. Acta Geotechnica, 2(3):197–210, October 2007.
- J. Lubliner. Plasticity Theory. Macmillan Publishing Company, New York., 1990.
- S. I. M. Sensitivity analysis for non-linear mathematical models. Math. Modeling Comput. Exp., 1, 1993.
- K. Sett, B. Jeremić, and M. L. Kavvas. Probabilistic elasto-plasticity: Solution and verification in 1D. Acta Geotechnica, 2(3):211–220, October 2007.
- K. Sett, B. Jeremić, and M. L. Kavvas. Stochastic elastic-plastic finite elements. Computer Methods in Applied Mechanics and Engineering, 200(9-12):997–1007, February 2011. ISSN 0045-7825. doi: DOI: 10.1016/j.cma.2010.11.021.
- B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7):964 – 979, 2008. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2007.04.002. URL http://www.sciencedirect.com/science/article/pii/S0951832007001329. Bayesian Networks in……Dependability.
- F. Wang, H. Wang, H. Yang, Y. Feng, and B. Jeremić. A modular methodology for time-domain intrusive stochastic seismic wave propagation. Computers and Geotechnics, (139), 2020. URL https://doi.org/ 10.1016/j.compgeo.2021.104409.
- H. Wang, F. Wang, H. Yang, Y. Feng, J. Bayless, N. A. Abrahamson, and B. Jeremić. Time domain intrusive probabilistic seismic risk analysis of nonlinear shear frame structure. Soil Dynamics and Earthquake Engineering, 136:106201, 2020. ISSN 0267-7261. doi: https://doi.org/10.1016/j.soildyn.2020.106201. URL http://www.sciencedirect.com/science/article/pii/S0267726119313016.
- H. Wang, F. Wang, H. Yang, Y. Feng, J. Bayless, N. A. Abrahamson, and B. Jeremić. Time domain intrusive probabilistic seismic risk analysis of nonlinear shear frame structure. Soil Dynamics and Earthquake Engineering, 136:106201, 2020. ISSN 0267-7261. doi: https://doi.org/10.1016/j.soildyn.2020.106201. URL http://www.sciencedirect.com/science/article/pii/S0267726119313016.
- H. Wang, F. Wang, H. Yang, K. Staszewska, and B. Jeremić. Sobol’ sensitivity analysis of a 1D stochastic elasto-plastic seismic wave propagation. Soil Dynamics and Earthquake Engineering, 191:109283, 2025. ISSN 0267-7261. doi: https://doi.org/10.1016/j.soildyn.2025.109283. URL https://www.sciencedirect.com/science/article/pii/S0267726125000764.
- H. Yang, S. K. Sinha, Y. Feng, D. B. McCallen, and B. Jeremić. Energy dissipation analysis of elastic-plastic materials. Computer Methods in Applied Mechanics and Engineering, 331:309–326, 2018.
- H. Yang, Y. Feng, H. Wang, and B. Jeremić. Energy dissipation analysis for inelastic reinforced concrete and steel beam-columns. Engineering Structures, 197:109431, 2019. ISSN 0141-0296. doi: https://doi. org/10.1016/j.engstruct.2019.109431. URL http://www.sciencedirect.com/science/article/pii/ S0141029618323459.
- H. Yang, H. Wang, Y. Feng, and B. Jeremić. Plastic energy dissipation in pressure-dependent materials. ASCE Journal of Engineering Mechanics, 2019. In Print.
- H. Yang, H. Wang, Y. Feng, F. Wang, and B. Jeremić. Energy dissipation in solids due to material inelasticity, viscous coupling, and algorithmic damping. ASCE Journal of Engineering Mechanics, 145(9), 2019.
- H. Yang, H. Wang, and B. Jeremić. Energy balance for earthquake soil structure interaction systems, analysis of input and dissipated energy. Engineering Structures, 2024. In Print.
- O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume 1. McGraw – Hill Book Company, fourth edition, 1991.
- O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume 2. McGraw – Hill Book Company, Fourth edition, 1991.