KVANTIFIKACIJA PROSTORNOG RASPOREDA RESURSA ZA BRZU REGULACIJU FREKVENCIJE

CIGRE 35 (2021) (стр. 705-712) 

АУТОР(И) / AUTHOR(S): Jelena Stojković, Predrag Stefanov

Е-АДРЕСА / E-MAIL: jstojkovic@etf.rs

Download Full Pdf   

DOI: 10.46793/CIGRE35.0705S

САЖЕТАК / ABSTRACT:

Tranzicija elektroenergetskog sistema ka obnovljivim izvorima energije doprinela je smanjenju i neravnomernoj raspodeli inercije obrtnih masa u sistemu. Brza regulacija frekvencije od strane resursa koji mogu u jako kratkom vremenskom intervalu da promene aktivnu snagu generisanja je viđena kao potencijalno rešenje za ublažavanje velikih i brzih promena frekvencije nakon poremećaja u sistemima male inercije. Resursi koji pružaju uslugu brze regulacije frekvencije različito doprinose poboljšanju frekvencije nakon poremećaja u zavisnosti od inercije dela sistema u kom se nalaze, kao i od udaljenosti od lokacije gde se desio poremećaj. U ovom radu će biti izvršena analiza uticaja lokacije resursa za brzu regulaciju frekvencije na frekvencijski odziv sistema nakon poremećaja i biće definisan indeks kojim se definiše vrednost resursa u zavisnosti od lokacije. Ovakva analiza treba da pruži dragocene informacije operatorima prenosnih sistema u pogledu prostornog raspoređivanja pri angažovanju resursa za brzu regulaciju frekvencije kojima se najviše doprinosi frekvencijskoj stabilnosti.

КЉУЧНЕ РЕЧИ / KEYWORDS:

Regulacija frekvencije, Mala inercija, Lokacija resursa, Frekvencijska stabilnost

ЛИТЕРАТУРА / REFERENCES:

  • Ulbig A, Borsche TS, Andersson G. Impact of low rotational inertia on power system stability and operation. IFAC Proceedings Volumes (IFACPapersOnline), vol. 19, 2014.
    https://doi.org/10.3182/201408246za1003.02615. 
  • Fang J, Li H, Tang Y, et al. On the Inertia of Future MoreElectronics Power Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics 2019;7:213046. https://doi.org/10.1109/JESTPE.2018.2877766
  • Xu T, Jang W, Overbye TJ. Investigation of inertia’s locational impacts on primary frequency response using largescale synthetic network models. 2017 IEEE Power and Energy Conference at Illinois, PECI 2017, 2017. https://doi.org/10.1109/PECI.2017.7935742.
  • Xu T, Liu Y, Overbye TJ. Metric development for evaluating inertia’s locational impacts on system primary frequency response. 2018 IEEE Texas Power and Energy Conference, TPEC 2018, vol. 2018 February, 2018. https://doi.org/10.1109/TPEC.2018.8312056.
  • Xiao Y, Lin X, Wen Y. A Framework for Assessing the Inertia Distribution of Power Systems. 2019 3rd IEEE Conference on Energy Internet and Energy System Integration: Ubiquitous Energy Network Connecting Everything, EI2 2019, 2019. https://doi.org/10.1109/EI247390.2019.9061937.
  • Adrees A, Milanović J V., Mancarella P. Effect of inertia heterogeneity on frequency dynamics of lowinertia power systems. IET Generation, Transmission and Distribution 2019;13. https://doi.org/10.1049/ietgtd.2018.6814.
  • Wilson D, Yu J, AlAshwal N, Heimisson B, Terzija V. Measuring effective area inertia to determine fastacting frequency response requirements. International Journal of Electrical Power and Energy Systems 2019;113:18. https://doi.org/10.1016/j.ijepes.2019.05.034.
  • Karbouj H, Rather ZH, Flynn D, Qazi HW. Nonsynchronous fast frequency reserves in renewable energy integrated power systems: A critical review. International Journal of Electrical Power and Energy Systems 2019;106:488501. https://doi.org/10.1016/j.ijepes.2018.09.046.
  • National Grid. Enhanced frequency response, 2019.
  • EirGrid S. DS3 programme operational capability outlook 2016 2015.
  • Australian Energy Market Operator. Power System Security Guidelines. n.d.
  • Eriksson R, Modig N, Elkington K. Synthetic inertia versus fast frequency response: A definition. IET Renewable Power Generation, vol. 12, 2018. https://doi.org/10.1049/ietrpg.2017.0370.
  • Hong Q, Nedd M, Norris S, Abdulhadi I, Karimi M, Terzija V, et al. Fast frequency response for effective frequency control in power systems with low inertia. The Journal of Engineering 2019; 2019: 1696–702. https://doi.org/10.1049/joe.2018.8599.
  • Brogan PV, Best RJ, Morrow DJ, McKinley K, Kubik ML. Effect of BESS Response on Frequency and RoCoF During Underfrequency Transients. IEEE Transactions on Power Systems 2019;34. https://doi.org/10.1109/TPWRS.2018.2862147.
  • Badesa L, Teng F, Strbac G. Pricing inertia and Frequency Response with diverse dynamics in a Mixed-Integer Second-Order Cone Programming formulation. Applied Energy 2020; 260.
    https://doi.org/10.1016/j.apenergy.2019.114334.
  • Qureshi FU, Verbic G, Garmroodi M, Chapman A, Ahmadyar AS. Using fast frequency response services to improve frequency stability of low inertia power systems. Australasian Universities Power Engineering Conference, AUPEC 2018, 2018. https://doi.org/10.1109/AUPEC.2018.8757957.
  • Kez D Al, Foley AM, Morrow DJ. A Comparative Assessment of Battery Energy Storage Locations in Power Systems with High Wind Power Penetrations. Proceedings – 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2020, 2020. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160566.
  • Xu T, Jang W, Overbye T. Application of set-theoretic method to assess the locational impacts of virtual inertia services on the primary frequency responses. 2016 IEEE Power and Energy Conference at Illinois, PECI 2016, 2016. https://doi.org/10.1109/PECI.2016.7459253.
  • Poolla BK, Bolognani S, Dorfler F. Optimal Placement of Virtual Inertia in Power Grids. IEEE Transactions on Automatic Control 2017;62. https://doi.org/10.1109/tac.2017.2703302.
  • Zhang G, Ela E, Wang Q. Market Scheduling and Pricing for Primary and Secondary Frequency Reserve. IEEE Transactions on Power Systems 2019;34. https://doi.org/10.1109/TPWRS.2018.2889067