BETON MODIFIKOVAN GRAFEN-OKSIDOM

XXIX kongres DIMK i X kongres SIGP sa Međunarodnim simpozijumom o istraživanjima i primeni savremenih dostignuća u građevinarstvu u oblasti materijala i konstrukcija (2025) [pp. 148-155]  

AUTHOR(S) / АУТОР(И): Ksenija Janković , Anja Terzić , Marko Stojanović , Dragan Bojović

Download Full Pdf  

DOI: 10.46793/29DIMK.148J

ABSTRACT / САЖЕТАК:

S obzirom na to da je beton trenutno najrasprostranjeniji građevinski materijal, njegova čvrstoća i izdržljivost su njegove bitne karakteristike. Nedavna dostignuća u vidu primene  vlakna nanodimenyije, kao što su ugljenične nanotube i grafen oksid, poboljšala su performanse betona. Grafen oksid (GO) je dvodimenzionalni planarni list komprimovanih atoma ugljenika u konfiguraciji saća debljine 0,335 nm. GO je obećavajući nanomaterijal zbog svojih jedinstvenih svojstava, naime, dobio je međunarodnu pažnju zbog svojih izvanrednih mehaničkih, optičkih i termičkih svojstava. Pored regulacije sekundarnog mehanizma hidratacije, dodavanjem GO betonu poboljšavaju se njegove mehaničke performanse, izdržljivost, samozarastanje i druge multifunkcionalne karakteristike. Ova studija predstavlja ispitivanje svojstava betona sa dodatkom GO. Pripremljena su četiri različita projekta betonske mešavine. GO je dodat u količinama od 0,01, 0,02, 0,03 i 0,06 %. Hidratacija je analizirana diferencijalnom termičkom analizom. Praćene su mehaničke čvrstoće u trajanju od 28 dana i otpornost na mraz sa solima za odleđivanje tokom 56 ciklusa.

KEYWORDS / КЉУЧНЕ РЕЧИ:

nano-additives; building materials; cement; microstructure; hydration; advanced properties

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

Ovo istraživanje je podržano od strane Ministarstva nauke, tehnološkog razvoja i inovacija kroz Ugovor broj 451-03-136/2025-03/ 200012 i projekta „101111694— GREENCO — ERASMUS-EDU-2022-PI-ALL-INNO“.

REFERENCES / ЛИТЕРАТУРА:

  • C. Lee, X. Wei, W.J. Kysar, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Sci. 321 (5887) (2008) 385–388.
  • M. Orlita, C. Faugeras, P. Plochocka, et al., Approaching the dirac point in high mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101 (26760126) (2008).
  • A. A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single layer graphene, Nano Lett. 8 (3) (2008) 902–907.
  • X. Cui, S. Sun, B. Han, et al., Mechanical, thermal and electromagnetic properties of nano graphite platelets modified cementitious composites, Composites Part A. 93 (2016) 49–58.
  • S. Wen, D.L. Chung, Electric polarization in carbon fiber-reinforced cement, Cem. Concr. Res. 31 (1) (2001) 141–147.
  • M. Sun, Z. Li, Q. Mao, et al., Study on the hole conduction phenomenon in carbon fiber-reinforced concrete, Cem. Concr. Res. 28 (4) (1998) 549–554.
  • S. Chuah, Z. Pan, J.G. Sanjayan, et al., Nano reinforced cement and concrete composites and new perspective from graphene oxide, Constr. Build. Mater. 73 (2014) 113–124.
  • A. Mohammed, J.G. Sanjayan, W.H. Duan, et al., Incorporating graphene oxide in cement composites: A study of transport properties, Constr. Build. Mater. 84 (2015) 341–347.
  • W. Li, X. Li, S.J. Chen, et al., Effects of graphene oxide on early-age hydration and electrical resistivity of portland cement paste, Constr. Build. Mater. 136 (2017) 506–514.
  • J. Wei, L. Zhao, Q. Zhang, et al., Enhanced thermoelectric properties of cement based composites with expanded graphite for climate adaptation and largescale energy harvesting, Energy & Buildings 159 (2018) 66–74.
  • I. Rhee, J.S. Lee, H.K. Jin, et al., Thermal performance, freeze-and-thaw resistance, and bond strength of cement mortar using rice husk-derived graphene, Constr. Build. Mater.146 (2017) 350–359.
  • H. Y. Chu, J.Y. Jiang, et al., Effects of graphene sulfonate nanosheets on mechanical and thermal properties of sacrificial concrete during high temperature exposure, Cem. Concr. Compos. 157 (2017) 188–197.
  • H. Y. Chu, J.Y. Jiang, et al., Mechanical and thermal properties of graphene sulfonate nano-sheet reinforced sacrificial concrete at elevated temperatures, Constr. Build. Mater.153 (2017) 682–694.
  • J. L. LE, H. Du, Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation, Composites Part B 67 (2014) 555–563.
  • Q. Liu, Q. Xu, Q. Yu, et al., Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets, Constr. Build. Mater. 127 (2016) 565–576.
  • A. Sedaghat, M.K Ram, et al., Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications, J Compos Mater 4 (2014) 12–21.
  • A. Peyvandi, P. Sorushian, A.M. Balachandra, et al., Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets, Constr. Build. Mater. 47 (2013) 111–117.
  • A. Mohammed, J.G. Sanjayan, W.H. Duan, et al., Incorporating graphene oxide in cement composites: A study of transport properties, Constr. Build. Mater. 84 (2015) 341–347.
  • N. Zhang, W. She, F. Du, et al., Experimental study on mechanical and functional properties of reduced graphene oxide/cement composites, MATERIALS. 13 (301513) (2020).
  • K. Gong, Z. Pan, A.H. Korayem, et al., Reinforcing Effects of Graphene Oxide on Portland Cement Paste, J Mater Civil E 27 (2) (2015) A4014010.
  • M. A. Rafiee, T.N. Narayanan, D.P. Hashim, et al., Hexagonal Boron Nitride and Graphite Oxide Reinforced Multifunctional Porous Cement Composites, Adv. Funct. Mater. 23 (45) (2013) 5624–5630.
  • X. Li, W. Wei, H. Qin, et al., Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement, J Phys. Chem. Sol. 85 (2015) 39–43.
  • F. Babak, H. Abolfazal, R. Alimorad, et al., Preparation and mechanical properties of graphene oxide: cement nanocomposites, Sci World J. 4 (2014) 12–22.
  • E. Horszczaruk, E. Mijowska, R.J. Kalenczuk, et al., Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young’s modulus, Constr. Build. Mater 78 (2015) 234–242.
  • S. Sun, S. Ding, B. Han, et al., Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence, Composites Part B. 129 (2017) 221–232.
  • M. Ayan-Varela, J.I. Paredes, S. Villar-Rodil, et al., A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents, Carbon 75 (2014) 390–400.
  • M. M. Lotya, P.J. King, U. Khan, et al., High-concentration, surfactant-stabilized graphene dispersions, Acs Nano. 4 (2010) 3155.
  • M. Lotya, Y. Hernandez, P.J. King, et al., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, Jam. Chem. Soc. 131 (2009) 3611–3620.
  • S. Perumal, T. K Park, H.M Lee, et al. PVP-b-PEO block copolymers for stable aqueous and ethanolic graphene dispersions, J. Colloid Interface Sci, 2015,464:25.
  • M. AlanyalioG˘ lu, J.J. Segura, et al., The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes, Carbon 50 (2012) 142–152.
  • S. N. Lu, N. Xie, L.C. Feng, et al., Applications of nanostructured carbon materials in constructions: the state of the art, J. Nanomater. 4 (2015) 6.
  • E. Horszczaruk, E. Mijowska, K. Cendrowski, et al., Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar, Constr. Build. Mater 66 (2014) 418–421.
  • G. M. Kim, I.W. Nam, H.N. Yoon, et al., Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites, Compos, Struct, 2018.
  • Netanswer, Nanoimaging of highly dispersed carbon nanotube reinforced cement based materials, Mater Struct (2018).