Comparative Analysis of DC Motor Vibration Signal for Discrete and Continuous State Feedback Control of a Modular Servo System

XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 31-34)

АУТОР(И) / AUTHOR(S): Anđela Đorđević , Jianxun Cui , Marko Milojković , Staniša Perić 

Download Full Pdf  

DOI:  10.46793/SAUM24.031DJ

САЖЕТАК / ABSTRACT:

The goal of this research is distinguishing the control scheme which ensures better preservation of DC motor components. This is achieved by monitoring and analyzing DC motor vibration signal. In order to collect the vibration data, a low-cost vibration acquisition system was built using Raspberry Pi 3B and MEMS triple axis accelerometer. The vibration signal was collected during two control scenarios: state feedback control with continuous linear quadratic (LQ) and state feedback control with discrete LQ controller. The collected information was analyzed in order to determine which control method ensures lower vibration intensity. The two methods were evaluated by comparing several vibration metrics: acceleration peak, RMS, crest factor, standard deviation and a newly proposed vibration measurement factor (VMF).

КЉУЧНЕ РЕЧИ / KEYWORDS:

modular servo system, vibration analysis, low-cost monitoring, predictive maintenance, control system maintenance

ПРОЈЕКАТ/ ACKNOWLEDGEMENT:

This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia [grant number 451-03-66/2024-03/200102].

ЛИТЕРАТУРА / REFERENCES

  1. D. Djordjevic, M. B. Milovanovic, M. T. Milojkovic, J. G. Petrovic and S. S. Nikolic, “Endocrine CNN-Based Fault Detection for DC Motors”, Elektronika ir Elektrotechnika, vol. 30, no. 3, pp. 4-14, 2024. DOI: 10.5755/j02.eie.36747.
  2. Zimnickas, J. Vanagas, K. Dambrauskas, A. Kalvaitis, and M. Ažubalis, “Application of advanced vibration monitoring systems and long short-term memory networks for brushless DC motor stator fault monitoring and classification”, Energies, vol. 13, no. 4, p. 820, 2020. DOI: 10.3390/en13040820.
  3. A. Papathanasopoulos, K. N. Giannousakis, E. S. Dermatas, and E. D. Mitronikas, “Vibration monitoring for position sensor fault diagnosis in brushless DC motor drives”, Energies, vol. 14 no. 8, p. 2248, 2021. DOI: 10.3390/en14082248.
  4. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders”, IEEE/CAA Journal of Automatica Sinica, vol. 6 no. 2, pp. 441–451, 2019. DOI: 10.1109/JAS.2019.1911393.
  5. Kim, J. H. Jung, J. U. Ko, H. B. Kong, J. Lee, and B. D. Youn, “Direct connection-based convolutional neural network (DC-CNN) for fault diagnosis of rotor systems”, IEEE Access, vol. 8, pp. 172043 172056, 2020. DOI: 10.1109/ACCESS.2020.3024544.
  6. H. Ozcan, O. C. Devecioglu, T. Ince, L. Eren, and M. Askar, “Enhanced bearing fault detection using multichannel, multilevel 1D CNN classifier”, Electrical Engineering, vol. 104, no. 2, pp. 435–447, 2022. DOI: 10.1007/s00202-021-01309-2.
  7. Mey, W. Neudeck, A. Schneider, and O. Enge-Rosenblatt, “Machine learning-based unbalance detection of a rotating shaft using vibration data”, in Proc. of 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2020, pp. 1610–1617. DOI: 10.1109/ETFA46521.2020.9212000.
  8. -L. Lin, “Application combining VMD and ResNet101 in intelligent diagnosis of motor faults”, Sensors, vol. 21, no. 18, p. 6065, 2021. DOI: 10.3390/s21186065.
  9. Varanis, M., Silva, A., Mereles, A., & Pederiva, R. (2018). MEMS accelerometers for mechanical vibrations analysis: a comprehensive review with applications. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-18.
  10. Krishnaveni, S., Raja, S. S., Jayasankar, T., & Babu, P. S. (2021). Analysis and control of the motor vibration using arduino and machine learning model. Materials Today: Proceedings, 45, 2551-2555.
  11. Jatakar, K. H., Mulgund, G., Patange, A. D., Deshmukh, B. B., Rambhad, K. S., Saxena, A., & Kalbande, V. (2022). Vibration monitoring system based on ADXL335 accelerometer and Arduino Mega2560 interface. Journal of Algebraic Statistics, 13(2), 2291-2301.
  12. Manikandan, K. G., Pannirselvam, K., Kenned, J. J., & Kumar, C. S. (2021). Investigations on suitability of MEMS based accelerometer for vibration measurements. Materials Today: Proceedings, 45, 6183-6192.
  13. Komarizadehasl, S., Mobaraki, B., Ma, H., Lozano-Galant, J. A., & Turmo, J. (2021). Development of a low-cost system for the accurate measurement of structural vibrations. Sensors, 21(18), 6191.
  14. Lei, Y. J., Li, R. J., Chen, R. X., Zhang, L. S., Hu, P. H., Huang, Q. X., & Fan, K. C. (2021). A high-precision two-dimensional micro-accelerometer for low-frequency and micro-vibrations. Precision Engineering, 67, 419-427.
  15. Zonzini, F., Malatesta, M. M., Bogomolov, D., Testoni, N., Marzani, A., & De Marchi, L. (2020). Vibration-based SHM with upscalable and low-cost sensor networks. IEEE Transactions on Instrumentation and Measurement, 69(10), 7990-7998.
  16. Aswin, F., Dwisaputra, I., & Afriansyah, R. (2020, February). Online vibration monitoring system for rotating machinery based on 3-axis MEMS accelerometer. In Journal of Physics: Conference Series (Vol. 1450, No. 1, p. 012109). IOP Publishing.
  17. Villarroel, A., Zurita, G., & Velarde, R. (2019). Development of a low-cost vibration measurement system for industrial applications. Machines, 7(1), 12.
  18. Sabato, C. Niezrecki and G. Fortino, „Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review,“ in IEEE Sensors Journal, vol. 17, no. 2, pp. 226-235, 15 Jan.15, 2017, doi: 10.1109/JSEN.2016.2630008.
  19. Huang, C. Y., & Chen, J. H. (2016). Development of dual-axis MEMS accelerometers for machine tools vibration monitoring. Applied Sciences, 6(7), 201.
  20. Chaudhury, S. B., Sengupta, M., & Mukherjee, K. (2014). Vibration monitoring of rotating machines using MEMS accelerometer. International journal of scientific engineering and research, 2(9), 5-11.
  21. Ratcliffe, C., Heider, D., Crane, R., Krauthauser, C., Yoon, M. K., & Gillespie Jr, J. W. (2008). Investigation into the use of low cost MEMS accelerometers for vibration based damage detection. Composite Structures, 82(1), 61-70.
  22. Modular Servo System (MSS), Inteco, Poland, 2006. User’s manual. Available: http://www.inteco.com.pl/Docs/Servo_um.pdf
  23. Raspberry Pi 3 Model B+, [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/, visited in April 2024.
  24. Triple Axis Accelerometer Specifications, [Online]. Available: https://wiki.dfrobot.com/Triple_Axis_Accelerometer_FXLN83XX_Series, visited in April 2024