New Design of a Multirobotic System for Automation of Work with Biomaterials

XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 19-21)

АУТОР(И) / AUTHOR(S): Rybak Larisa , Cherkasov Vladislav , Voloshkin Artem , Nozdracheva Anna

Download Full Pdf  

DOI:  10.46793/SAUM24.019R

САЖЕТАК / ABSTRACT:

The article presents the structure of a multirobotic system (MRS) for aliquoting biomaterials, including a stationary delta robot and a collaborative robot Aubo i5. The system divides working areas into „clean“ and „dirty“ ones, and interaction between robots is implemented via a digital interface. The Aubo i5 transports the test tubes, while the delta robot performs liquid sampling and dosing operations. A technical vision system based on YOLOv8 is used to automatically determine the position of objects. Experimental studies have demonstrated high accuracy and reliability of the system.

КЉУЧНЕ РЕЧИ / KEYWORDS:

control system, parallel robot, computer vision, liquid

ПРОЈЕКАТ/ ACKNOWLEDGEMENT:

This work was supported by the state assignment of Ministry of Science and Higher Education of the Russian Federation under Grant FZWN-2020-0017. The work was realized using equipment of High Technology Center at BSTU named after V. G. Shukhov.

ЛИТЕРАТУРА / REFERENCES

  1. Arents, J., & Greitans, M. (2021). Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. IEEE Access, 9, 145678-145691. DOI: 10.1109/ACCESS.2021.3095091.
  2. Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767. DOI: arXiv:1804.02767.
  3. Chen, I.-M. (2001). Rapid response manufacturing through reconfigurable robotic workcells. Journal of Robotics and Computer-Integrated Manufacturing, 17(3), 199–213. DOI: 10.1016/S0736-5845(00)00038-3.
  4. Chen, J. S., & Hsu, W. Y. (2004). Design and analysis of a rack machine tool with an integrated Cartesian guiding and metrology mechanism. Precision Engineering, 28(1), 46–57. DOI: 10.1016/S0141-6359(03)00073-4.
  5. Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., & Chryssolouris, G. (2015). Design considerations for safe human-robot collaborative workplaces. Procedia CIRP, 37, 248-253. DOI: 10.1016/j.procir.2015.08.027.
  6. Clavel, R., & Sogeva, S. A. (1990). Device for the movement and positioning of an element in space. US Patent, US4976582.
  7. Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., & Chryssolouris, G. (2017). On a Human–Robot Workplace Design and Task Allocation System. International Journal of Computer Integrated Manufacturing, 30(12), 1272-1279. DOI: 10.1080/0951192X.2017.1308464.
  8. Dallej, T., Andreff, N., & Martinet, P. (2006). Visual servoing of Par4 using leg observation. IEEE Industrial Electronics Society Conference, 3782-3787. DOI: 10.1109/IECON.2006.347646.
  9. Dwivedy, S. K., & Eberhard, P. (2006). Dynamic analysis of flexible manipulators: A literature review. Mechanism and Machine Theory, 41(7), 749–777. DOI: 10.1016/j.mechmachtheory.2006.01.014.
  10. Shirzadeh, M., Asl, H. J., Amirkhani, A., & Jalali, A. A. (2017). Vision-Based Control of a Quadrotor Utilizing Artificial Neural Networks for Tracking of Moving Targets. Engineering Applications of Artificial Intelligence, 58, 34-48. DOI: 10.1016/j.engappai.2016.12.013.