14. Savetovanje o elektrodistributivnim mrežama Srbije, sa regionalnim učešćem (2024), Broj rada: R-5.05
АУТОР / AUTHOR(S): Neven Kovački, Željko Popović, Nikola Milošević
DOI: 10.46793/CIRED24.R-5.05NK
САЖЕТАК / ABSTRACT:
Ovaj rad predstavlja pristup za određivanje najboljeg višegodišnjeg plana poboljšanja pouzdanosti urbanih distributivnih mreža zamenom i revitalizacijom kablova uzimajući u obzir proširenja/promene mreže u planskom periodu. On određuje broj i lokacije kablova u mreži koje je potrebno zameniti ili obnoviti u svakoj godini razmatranog planskog perioda da bi se ispunio cilj donosioca odluka. Cilj koji se razmatra u ovom radu je postizanje željene ravnoteže između poboljšanja indeksa pouzdanosti (SAIFI, SAIDI, ASIDI) i troškova zamene i revitalizacije, uvažavajući budžetska ograničenja. Ovaj cilj se postiže primenom predloženog modela višekriterijumskog mešovitog celobrojnog linearnog programiranja (MILP), kojim se u svakoj od razmatranih godina utvrđuje skup neinferiornih rešenja (planovi zamene i revitalizacije). Ovi planovi se zatim koriste u okviru predloženog algoritma više kriterijumskog dinamičko programiranje (MCDP) za generisanje skupa višegodišnjih planova i određivanje najboljeg višegodišnjeg plana zamene i revitalizacije kablova. Poređenje (rangiranje) planova u okviru predloženog MCDP se vrši korišćenjem višekriterijumske tehnike TOPSIS. Ova tehnika omogućava uvažavanje različitih preferencija donosioca odluka u pogledu nivoa poboljšanja indeksa pouzdanosti u mreži.
КЉУЧНЕ РЕЧИ / KEYWORDS:
poboljšanje pouzdanosti, revitalizacija, zamena, višekriterijumsko, višegodišnje.
ПРОЈЕКАТ/ ACKNOWLEDGEMENTS:
Оvo istraživanje је podržano od strane Ministarstva nauke, tehnološkog razvoja i inovacija (br. ugovora: 451-03-65/2024-03/200156) i Fakulteta tehničkih nauka Univerziteta u Novom Sadu kroz projekat „Nučnoistraživački i umetničkoistraživački rad istraživača u nasavničkim i saradničkim zvanjima Fakulteta tehničkih nauka Unverziteta u Novom Sadu“ (br: 01-3394/1).
ЛИТЕРАТУРА / REFERENCES:
[1] Popovic ZN, Knezevic S, Popovic D, 2019, „Risk-based allocation of automation devices in distribution networks with performance based regulation of continuity of supply”, IEEE Trans Power Syst, 34, str. 171-181. doi: 10.1109/TPWRS.2018.2857412.
[2] Popovic ZN, Kovacki NV, 2022, „Multi-period reconfiguration planning considering distribution network automation“, Int Jour of Electr Power & Energy Syst, 139: 107967. doi: 10.1016/j.ijepes.2022.107967.
[3] Shimakage T, Wu K, Kato T, Okamoto T, Suzuoki Y, 2002, “Economic evaluation of cable replacement considering annual failure probability”, Conference record of the 2002 IEEE International Symposium on Electrical Insulation, 472-475. doi: 10.1109/ELINSL.2002.995977.
[4] Bloom JA, Feinstein C, Morris P.,2006, “Optimal replacement of underground distribution cables”, IEEE PES Power Systems Conference and Exposition 2006, 389-393. doi: 10.1109/PSCE.2006.296343.
[5] Eriksson R, Werelius P, Adeen L, Johansson P, Flodqvist H, 2003, “Condition based replacement of medium voltage cables saves millions-case study Botkyrka”, IEEE Bologna Power Tech Conference Proceedings, 2003, doi: 10.1109/PTC.2003.1304297.
[6] Gill Y, 2011, “Development of an electrical cable replacement simulation model to aid with the management of aging underground electric cables”, IEEE Electrical Insulation Magazine, 27, str. 31-37. doi: 10.1109/MEI.2011.5699445.
[7] Xu L, Brown RE, 2011, “Justifying the proactive replacement of cable”, IEEE Power and Energy Society General Meeting, 2011, str. 1-6. doi: 10.1109/PES.2011.6039491.
[8] Buhari M, Levi V, Kapetanaki A, 2018, “Cable replacement considering optimal wind integration and network reconfiguration”, IEEE Trans Smart Grid, 9, str.5752-5763. doi: 10.1109/TSG.2017.2696340.
[9] Buhari M, Levi V, Awadallah SKE, 2016, “Modelling of ageing distribution cable for replacement planning”, IEEE Trans Power Syst, 31, str. 3996-4004. doi: 10.1109/TPWRS.2015.2499269.
[10] Awadallah SKE, Milanović JV, Jarman PN, 2014, “Reliability based framework for cost-effective replacement of power transmission equipment”, IEEE Trans Power Syst, 29, str.2549-2557. doi: 10.1109/TPWRS.2014.2309337.
[11] López JC, Lavorato M, Rider MJ, 2016, “Optimal reconfiguration of electrical distribution systems considering reliability indices improvement”, Int Jour of Electr Power & Energy Syst, 78, str.837-845. doi: 10.1016/j.ijepes.2015.12.023.
[12] Council of European Energy Regulators, 6th CEER benchmarking report on the quality of electricity and gas supply, 2016. Available: https://www.ceer.eu/documents/104400/-/-/d064733a-9614-e320-a068-2086ed27be7f.
[13] Daellenbach HG, De Kluyver CA, 1980, “Note on multiple objective dynamic programming”, Jour Oper Res Soc, 31, str. 591–94. doi: 10.2307/2580846.
[14] Goh HH, Kok BC, Yeo HT, Lee SW, Zin AAM, 2013, “Combination of TOPSIS and AHP in load shedding scheme for large pulp mill electrical system”, Int Jour of Electr Power & Energy Syst, 47, str.198-204. doi: 10.1016/j.ijepes.2012.10.059.
[15] Nemati HM, Sant’Anna A, Nowaczyk S., 2015, “Reliability evaluation of underground power cables with probabilistic models”, 11th International Conference on Data Mining (DMIN’15), str. 37-43.
[16] EPRI. Guidelines for Intelligent Asset Replacement: Volume 3-Underground Distribution Cables, 2005, Available: https://www.epri.com/research/products/1010740 1010740.
[17] Cohon JL, Marks DH, 1975, “A review and evaluation of multiobjective programing techniques”, Water resources research, 11, str.208-220. doi: https://doi.org/10.1029/WR011i002p00208.
[18] Willis HL, 2004, “Power Distribution Planning Reference Book”, Marcel Dekker Inc, New York.
[19] Su CT, Lee CS, 2003, “Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution”, IEEE Trans Power Del, 18, str.1022–1027. doi: 10.1109/TPWRD.2003.813641.