АУТОР / AUTHOR(S): Viktoriia A. Iudina , Sergey S. Chernomorets , Inna N. Krylenko, Tatyana A. Vinogradova, Mikhail D. Dokukin , Eduard V. Zaporozhchenko
DOI: 10.46793/CSGE5.189VL
САЖЕТАК / ABSTRACT:
The Gerkhozhan-Su river valley is one of the most prone in terms of debris flow formation in the North Caucasus Mountains. This work aimed to apply a chain of mathematical models to estimate debris flow characteristics. The simulation was carried out along the river from the upper reaches to the top of the debris flow cone. The choice to apply one model or another was based on the prevalence of the flow state in the particular section. Thus, the transport-shift model was used for debris flow source and sections, where intensification of the flow characteristics took place. The hydrodynamic FLO-2D model was used for transit and accumulation sections. Modeling was conducted for two scenarios: I – high-density flow and II – low-density flow. In the FLO–2D model, 5 cases of rheological parameters were used with different volume concentrations from 25 to 40%. Also, eight variants of loose material parameters in the transport-shift model were considered. According to the modeling results, the initial moisture of the material has the most significant influence on the maximum debris flow discharge. As for the input hydrological data, the results of the field survey, which was held right after the debris flow passage, were used for hydrograph construction. Modeling results included 12 hygrographs for each section. The comparison with field surveys and other modeled results showed the effectiveness of the modeling chain. Also, the causes and consequences of debris flow in 2000 and recent ones are given. The current state of the valley and possibilities of future debris flow formation based on field surveys are presented.
КЉУЧНЕ РЕЧИ / KEYWORDS:
debris flow; modeling; transport-shift model; FLO-2D; Gerkhozhan-Su
ЛИТЕРАТУРА / REFERENCES:
- Baranovsky, A. F. (2004). Debris flows of the year of 2000 in Gerkhozhan-Su river basin. Proceedings of the Conference “Zashchita narodnokhozyaistvennykh ob’’ektov ot vozdeistviya selevykh potokov” [Protection of economic facilities against debris flows]. 2, Pyatigorsk. 90–96.
- Bekkiev, M. Yu, Anaev, M. A, Dokukin, M. D., Kalov, R. Kh., Malneva, I. V., & Viskhadzhieva, K. S. (2020). Anomalous movement of Buzulgan landslide in the Gerhozhan-Su River valley (Central Caucasus) in 2020. GeoRisk World, 14(4), 44–54. https://doi.org/10.25296/1997-8669-2020-14-4-44-54
- Bozhinskii, A. N. (2003). Modeling debris flow dynamics by Monte-Carlo method. Vestnik Moskovskogo Universiteta. Seria 5, Geografia, 5, 28–31.
- Bozhinskii, A. N., Vinogradova, N. N., & Krylenko, I. V. (2004). A mathematical model of the catastrophic 2000 debris flow in Tyrnyauz city. Vestnik Moskovskogo Universiteta. Seria 5, Geografia, 5, 22–27.
- Chernokulsky, A., Kozlov, F., Zolina, O., Bulygina, O., Mokhov, I. I., & Semenov, V. A. (2019). Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environmental Research Letters, 14, 045001. https://doi.org/10.1088/1748-9326/aafb82
- Chernomorets, S. S. (2005). Селевые очаги до и после катастроф [Debris flow sources before and after catastrophes]. Nauchnyy mir Moskva.
- Chernomorets, S. S., & Tutubalina, O. V. (2005). To the 40th anniversary of University debris flow expeditions in the Gerkhozhan-Su river basin (Caucasus). Vestnik Moskovskogo Universiteta, Seria 5, Geografia, 5(2), 79–80.
- Dokukin, M. D., Anaev, M. A., Bekkiev, M. Yu., Bogachenko, E. M., Zaporozhchenko, E. V., Kalov, R. H., Savernyuk, E. A., Chernomorec, S. S., Hadjiev, M. M., & Khatkutov, A. V. (2018, October 1–5). Selevye potoki 14-15 avgusta 2017 g. v bassejne r. Gerhozhan-Su (Central’nyj Kavkaz): usloviya i prichiny formirovaniya, dinamika, posledstviya [Mudflows on August 14-15, 2017 in the basin of the Gerkhozhan-Su river (Central Caucasus): conditions and causes of formation, dynamics, consequences]. Proceedings of the 5th International Conference “Debris flows: disasters, risk, forecast, protection”. Tbilisi, Georgia. 317–330.
- Dokukin, M. D., Bekkiev, M. Yu., Kalov, R. H., & Hadjiev, M. M. (2020a). The mudflow dynamics of the river Gerkhozhan-Su in the section of the mudflow tray and mudslides protection of the city of Tyrnyauz (Central Caucasus). E3S Web of Conferences, 157, 02018. https://doi.org/10.1051/e3sconf/202015702018
- Dokukin, M. D., Bekkiev, M. Yu., Kalov, R. H., Savernyuk, E. A., Chernomorets S. S., & Bogachenko E. M. (2020b). Glaciogeomorphological conditions for the Gerkhozhan-Su River debris flow formation (Central Caucasus). Proceedings of the 6th International Conference “Debris flows: disasters, risk, forecast, protection”. Dushanbe–Khorog, Tajikistan, 1, 388–404. https://www.debrisflow.ru/wp-content/uploads/2020/12/DF20_Proceedings_Vol_1.pdf
- Fleishman, S. M., Seinova, I. B., & Zolotarev, E. A. (1979). Formation of glacial debris flows of non-breakthrough genesis in the Gerkhozhan-Su river basin, Northern Caucasus. Materialy Glyatsiol. Issl., 35, 195–198.
- FLO–2D Software, Inc. (2006). FLO–2D User’s manual (Version 2006.01) [Model]. Nutrioso, AZ, USA.
- Gerasimov, V. A. (1980). Debris flows of August 10 and 11, 1977, in the basin of Gerkhozhan-Su river (North Caucasus) and their formation conditions. Debris Flows, 4, 68–76.
- Golubev, G. N., & Labutina, I. A. (1968). Moraine relief changes in the formation zone of glacial debris flows (by data of aerial photographs). Materialy Glyatsiol. Issled., 14, 322–325.
- Hirschberg, J., Fatichi, S., Bennett, G. L., McArdell, B. W., Peleg, N., Lane, S. N., Schlunegger, F., & Molnar, P. (2021). Climate change impacts on sediment yield and debris-flow activity in an Alpine catchment. Journal of Geophysical Research: Earth Surface, 126(1), e2020JF005739 https://doi.org/10.1029/
2020JF005739 - Hock, R., & Huss, M. (2021). Chapter 9 – Glaciers and climate change. In T. M. Letcher (Ed.), Climate Change (Third Edition) (pp. 157-176). Elsevier. https://doi.org/10.1016/B978-0-12-821575-3.00009-8
- Hungr, O., Evans, S. G., Bovis, M., & Hutchinson, J. N. (2001). Review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7(3), 221–238. https://doi.org/10.2113/
gseegeosci.7.3.221 - Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8, 135–140. https://doi.org/10.1038/s41558-017-0049-x
- IPCC (2014). Summary for Policymakers. In: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–30). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
- Iudina (Kurovskaia), V. A., Chernomorets, S. S., Krylenko, I. N., Vinogradova, T. A., Krylenko, I. V., Savernyuk, E. A., Gulomaydarov, A. G., Zikillobekov, I. I., Pirmamadov, U. R., & Raimbekov, Y. K. (2022a). Assessment of possible consequences of outburst floods: case study of the Bodomdara river valley (Tajikistan). Earth’s Cryosphere, 26(5), 14–28. http://dx.doi.org/10.15372/KZ20220502
- Iudina, V. A., Chernomorets, S. S., Krylenko, I. N., Vinogradova, T. A., & Zaporozhchenko, E. V. (2023). Reconstruction of debris flow in the Gerkhozhan-Su river valley based on the chain modeling. E3S Web of Conferences, 415, 05007. https://doi.org/10.1051/e3sconf/202341505007
- Iudina, V. A., Chernomorets, S. S., Vinogradova, T. A., & Krylenko, I. N. (2022b). Modeling of debris flow triggered by snow melting: case study of the Barsemdara river, Tajikistan. Earth’s Cryosphere, 26(3), 51–63. https://doi.org/10.15372/KZ20220306
- Iudina, V. A., Iudin, N. E., & Vinogradova, T. A. (2022c). Program for calculation of outburst flood and debris flows (FLOVI). Certificate of state registration of the computer program no. 2022683748.
- Kjunzh, F. A., & Holli, F. M. (1985). Chislennye metody v zdachakh rechnoi gidravliki [Numerical methods in tasks river hydraulics] (J. A. Cunge, F. M. Holly & A. Verwey, Trans). Moscow. Energoatomizdat. (Original work published 1980).
- Krylenko, I. V., Petrakov, D. A., Tutubalina, O. V., Chernomorets, S. S., & Zhuravleva, P. G. (2004). Dinamika selevogo bassejna r. Gerhozhan-Su (Kabardino-Balkariya) posle katastrofy v iyule 2000 goda [Dynamics of the mudflow basin of the Gerkhozhan-Su river (Kabardino-Balkaria) after the disaster in July 2000]. Glaciological Research Materials, 96, 159–166.
- Kurovskaia, V. A., Chernomorets, S. S., Krylenko, I. N., Vinogradova, T. A., Dokukin, M. D., & Zaporozhchenko, E. V. (2022). Buzulgan rockslide: simulation of debris flows along Gerkhozhan-Su river and scenarios of their impact on Tyrnyauz town after changes in 2020. Water Resources, 49(1), 58–68. https://doi.org/10.1134/S0097807822010110
- Mikhailov, V. O., & Chernomorets, S. S. (2011). Matematicheskoe modelirovanie selei, obvalov i opolznei [Mathematical modeling of debris flows, collapses, and rockslides]. Saarbryukken: LAP Lambert.
- Motschmann, A., Huggel, C., Carey, M., Moulton, H., Walker-Crawford, N., & Muñoz, R. (2020). Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Climatic Change, 162, 837–858. https://doi.org/10.1007/s10584-020-02770-x
- Mirnyy A. Yu., Iudina V.A. (2022). Disperse soil nonlinear viscosity determination experience. Proceedings of the International Conference “Soil mechanics in geotechnics and foundation engineering”. Novocherkassk, Russia, 1, 390–395.
- O’Brien, J. S., & Julien, P. Y. (1988). Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, 114(3), 877–887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
- O’Brien, J. S., Julien, P. Y., & Fullerton, W. (1993). Two-dimensional water flood, debris flow simulation. Journal of Hydraulic Engineering, 119(2), 244–259. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
- Panov, V. D., Lur’e, P. M., & Zarudnev, V. M. (2001). Debris flows in Gerkhozhan-Su river basin (North Caucasus) in July 2000. Meteorol. Hydrol., 2, 89–97.
- Perov, V., Chernomorets, S. S., Budarina, O., Savernyuk, E., & Leontyeva, T. (2017). Debris flow hazards for mountain regions of Russia: regional features and key events. Natural Hazards, 88(1), 199–235. https://doi.org/10.1007/s11069-017-2841-3
- Petrakov, D. A., Tutubalina, O. V., Chernomorets, S. S., & Krylenko, I. V. (2004). Method for monitoring a debris flow basin under the conditions of mountain cryolithozone: case study of the Gerkhozhan-Su river, Caucasus. Earth’s Cryosphere, 8(3), 57–67.
- Rickenmann D. (2016). Methods for the Quantitative Assessment of Channel Processes in Torrents (Steep Streams). CRC Press, London. https://doi.org/10.1201/b21306
- Rubtsov, E. A., & Seynova, I. B. (1968). Integrated studies of debris flow-hazardous region near Tyrnyauz city, in debris flows and mountain channel processes. Akademia Nauk USSR, 297–303.
- Seynova, I. B., & Zolotarev, E. A. (2001). Ledniki i seli Priel’brus’ya. (Evolyutsiya oledeneniya i selevoi aktivnosti) [Glaciers and debris flows in the Elbrus Region [Evolution of glaciation and debris flow activity]. Nauchnyy mir Moskva.
- Seynova, I. B., Andreev, Y. B., Krylenko, I. N., & Chernomorets, S. S. (2011, June 14-17). Regional short-term forecast of debris flow initiation for glaciated high mountain zone of the Caucasus. In R. Genevois, D. L. Hamilton & A. Prestininzi (Eds.), Proceedings of 5th International Conference “Debris-flow hazards mitigation: mechanics, prediction, and assessment”, Padua, Italy. 1003–1011. https://doi.org/10.4408/IJEGE.2011-03.B-109
- Sun, Q., Zhang, X., Zwiers, F., Westra, S., & Alexander, L. V. (2021). A global, continental, and regional analysis of changes in extreme precipitation. Journal of Climate, 34, 243–258. https://doi.org/10.1175/JCLI-D-19-0892.1
- Tielidze, L. G., Nosenko, G. A., Khromova, T. E., & Paul, F. (2022). Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020. The Cryosphere, 16, 489–504. https://doi.org/10.5194/tc-16-489-2022
- Tielidze, L. G., & Wheate, R. D. (2018). The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere, 12, 81–94. https://doi.org/10.5194/tc-12-81-2018
- Vinogradova, T. A., & Vinogradov, A. Y. (2017). The experimental debris flows in the Chemolgan river basin. Natural Hazards, 88, 189–198. https://doi.org/10.1007/s11069-017-2853-z
- Vinogradov, Yu. B., & Vinogradova, T. A. (2010). Mathematical Modeling in Hydrology. Moscow, Academy.
- Wei, K., Ouyang, C., Duan, H., Li, Y., Chen, M., Ma, J., An, H., & Zhou, S. (2020). Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China. The Innovation, 1(2), https://doi.org/10.1016/j.xinn.2020.100038
- Xu, X., Zhang, H., Sun, Y., Xu, B., Li, J., Dong, G., & Pan, B. (2024). The effects of climatic change and inter-annual variability on glacier retreat from ~ 1850s AD moraines in the Kuoqionggangri peak region, southern Tibetan Plateau. Climate Dynamics, 62, 2941–2951. https://doi.org/10.1007/s00382-023-07041-w
- Zaporozhchenko, E. V. (2002). Debris flows in the Gerkhozhan-Su river: manifestation history, formation conditions, energy characteristics. Collected scientific articles of OJSC “Sevkavgiprovodhoz”, 15, 80–148.
- Zerkal, O. V., Chernomorets, S. S., Iudina (Kurovskaia), V. A., Dokukin, M. D., Krylenko, I. N., Savernyuk, E. A., Vinogradova, T. A., & Zaporozhchenko, E. V. (2023). The modern activity of the Buzulgan landslide and its Influence on the debris flow hazard for the Tyrnyauz City (Northern Caucasus, Russia). Progress in Landslide Research and Technology, 2(1), 227–235. https://doi.org/10.1007/978-3-031-39012-8_10
- Zhou, B., Zou, Q., Jiang, H., Yang, T., Zhou, W-T., Chen, S-Y., & Yao, H-K. (2024). Process-driven susceptibility assessment of glacial lake outburst debris flow in the Himalayas under climate change. Advances in Climate Change Research, 15(3), 500–514. https://doi.org/10.1016/j.accre.2023.11.002
- Zolotarev, E. A., Popovnin, V. V., & Seinova, I. B. (1982). Regime of the Kayarty glacier in the Central Caucasus—an active debris flow source. Mater. Glyatsiol. Issled., 43, 69–75.