АУТОР(И): Natalija Aleksić, Vanja Šušteršič, Nikola Rakić, Dušan Gordić
Е-АДРЕСА: natalija94u@gmail.com
DOI: 10.46793/EEE22-3.07A
САЖЕТАК:
Postrojenja za prečišćavanje otpadnih voda doprinose uklanjanju zagađivača iz otpadne vode u skladu sa normama i propisima o kvalitetu otpadne vode na izlasku iz postrojenja i samim tim su neizostavni deo u tretmanu otpadnih voda i zaštite vodne sredine. U svakoj fazi tretmana otpadnih voda troši se značajna količina energije. Potreba da se zadovolji brzi rast populacije i strožiji uslovi u pogledu zahteva za kvalitetom efluenta dovela je do povećanja potrošnje energije u postrojenjima za tretman otpadnih voda. Potrošnja energije predstavlja usko grlo u postrojenjima za tretman otpadnih voda, a kako se broj ovih postrojenja širom sveta povećava, pitanje smanjenja potrošnje energije i energetske efikasnosti počinju da privlače pažnju. Takođe, sve ovo doprinosi povećanju troškova u postrojenjima za tretman otpadnih voda. Na potrošnju energije u postrojenjima za tretman otpadnih voda utiče mnogo faktora. Analiza i predviđanje potrošnje energije su ključni faktori za uštedu energije. Međutim, informacije o potrošnji energije i potencijali za obnovu/proizvodnju energije i postizanje energetske efikasnosti u postrojenjima za tretman otpadnih voda su i dalje veoma ograničene. Ovaj rad se bavi pregledom literature i analizira potrošnju energije u ovim postrojenjima kao i mogućnostima povećanja energetske efikasnosti ovih postrojenja kroz upotrebu obnovljivih izvora energije i kroz povrat energije iz samog postrojenja.
КЉУЧНЕ РЕЧИ:
postrojenje za tretman otpadne vode, potrošnja energije, obnovljivi izvori energije, energetska efikasnost
ЛИТЕРАТУРА:
- Plappally, A., Lienhard, J. Energy requirements for water production, treatment, end use, reclamation, and disposal, Renewable and Sustainable Energy Reviews, Vol. 16, No. 7, pp. 4818-4848, 2012. https://doi.org/10.1016/j.rser.2012.05.022
- Longo, S., d’Antoni, B. M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J.M., Mauricio-Iglesias, M., Soares, A., Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement, Applied Energy, Vol. 179, pp. 1251-1268, 2016. https://doi.org/10.1016/j.apenergy.2016.07.043
- Yerushalmi, L., Ashrafi, O., Haghighat, F.. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants, Water Science & Technology, Vol. 67, No. 5, pp. 1159-1164, 2013. https://doi.org/10.2166/wst.2013.681
- Xie, T., Chengwen, W. Energy Consumption in Wastewater Treatment Plants in China, in Proc. World Congress on Water, Climate and Energy, Dublin, Ireland, 2012. https://doi.org/10.13140/2.1.1228.9285
- Galan, B.,.Grossmann, Optimization strategies for the design and synthesis of distributed wastewater treatment networks, Vol. 3, No. 1, pp. S161–S164, 1999. https://doi.org/10.1016/S0098-1354(99)80040-4
- Awe, O., Liu, R., Zhao, Y. Analysis of Energy Consumption and Saving in Wastewater Treatment Plant : Case Study from Ireland, Journal of Water Sustainability, Vol. 6, pp. 63-76, 2016. https://doi.org/10.11912/jws.2016.6.2.63-76
- Maktabifard, M., Zaborowska, E., Makinia, J., Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production, Reviews in Environmental Science and Bio/Technology, Vol. 17, pp. 655–689, 2018. https://doi.org/10.1007/s11157-018-9478-x
- Panepinto, D., Fiore, S., Zappone, M., Genon, G., Meucci, Evaluation of the energy efficiency of a large wastewater treatment plant in Italy, Applied Energy, Vol. 161, pp. 404–411, 2016. https://doi.org/10.1016/j.%20apenergy.2015.10.027
- Xu, J., Li, Y., Wang, H., Wu, J., Wang, X., Li, Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China, Energy Procedia, Vol. 142, pp. 3055–3061, 2017. https://doi.org/10.1016/j.egypro.2017.12.444
- Belloir, C., Stanford, C., Soares, A. Energy benchmarking inwastewater treatment plants: the importance of site operationand layout, Environmental Technology, Vol. 36, No. 2, pp. 260-269, 2015. https://doi.org/10.1080/09593330.2014.951403
- Vaccari, M., Foladori, P., Nembrini, S., Vitali, F. Benchmarking of energy consumption in municipal wastewater treatment plants – A survey of over 200 plants in Italy, Water Science and Technology, Vol. 77, No. 9, pp. 2242-2252, 2018. https://doi.org/10.2166/wst.2018.035
- Christoforidou, P., Bariamis, G., Iosifidou, M., Nikolaidou, E., Samaras, P. Energy Benchmarking and Optimization of Wastewater Treatment Plants in Greece, Environmental Sciences Proceedings, Vol. 2, No. 1, pp. 36, https://doi.org/10.3390/environsciproc2020002036
- Cotterill, S.E., Dolfing, J., Jones, C., Curtis, T.P., Heidrich, E.S. Low temperature domestic wastewater treatment in a Microbial Electrolysis Cell with 1 m2 anodes: towards system scale-up, Fuel Cells, Vol. 17, No. 5, pp. 584–592, 2017. https://doi.org/10.1002/fuce.201700034
- Jones, E., van Vliet, M., Qadir, M., Bierkens, M.. Country-level and gridded estimates of wastewater production, collection, treatment and reuse, Earth System Science Data, Vol. 13, No. 2, pp. 237–254, 2021. https://doi.org/10.5194/essd-13-237-2021
- Myszograj, S., Bochenski, D., Makowski, M., Pluciennik-Koropczuk, E. Biogas, Solar and Geothermal Energy – The Way to a Net-Zero Energy Wastewater Treatment Plant – A Case Study, Energies, Vol. 14, 6898, 2021. https://doi.org/10.3390/en14216898
- Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O. Global and regional potential of wastewater as a water, nutrient and energy source, Natural Resources Forum, Vol. 44, pp. 40–51, 2020. https://doi.org/10.1111/1477-8947.12187
- Wastewater – report, https://infrastructurereportcard.org/cat- item/wastewater/ [pristupljeno 02.2022]
- Roostaei, J., Zhang, Y. Spatially Explicit Life Cycle Assessment: Opportunities and challenges of wastewater-based algal biofuels in the United States, Algal Research, Vol. 24, pp. 395-402, 2017. https://doi.org/10.1016/j.algal.2016.08.008
- European Environment Agency (EEA), Waterbase – UWWTD: Urban Waste Water Treatment Directive – reported data, https://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban- waste-water-treatment-directive-7 [pristupljeno 02.2022]
- Ganora, D., Hospido, A., Husemann, J., Krampe, J., Loderer, C., Longo, S., Moragas Bouyat, L., Obermaier, N., Piraccini, E., Stanev, S., Vaci, L., Pistocchi, A. Opportunities to improve energy use in urban wastewater treatment: a European-scale analysis, Environmental Research Letters, Vol. 14, No. 4, 044028, 2019. https://doi.org/10.1088/1748-9326/ab0b54
- Sechi, S., Giarola, S., Lanzini, A., Gandiglio, M., Santarelli, M., Oluleye, G., Hawkes, A.. A bottom-up appraisal of the technically installable capacity of biogas-based solid oxide fuel cells for self power generation in wastewater treatment plants, Journal of Environmental Management, Vol. 279:111753, 2021. https://doi.org/10.1016/j.jenvman.2020.111753
- Xu, A., Wu, Y., Chen, Z., Wu, G., Wu, Q., Ling, F., Huang, W., Hu, H. Towards the new era of wastewater treatment of China: Development history, current status, and future directions, Water Cycle, Vol. 1, pp. 80-87, 2020. https://doi.org/10.1016/j.watcyc.2020.06.004
- Qu, J, Wang, H., Wang, K., of Housing and Urban-Rural Construction of the People’s Republic of China (MOHURC) (2019), National Municipal Wastewater Treatment Management System, Beijing, China., https://english.www.gov.cn/state_council/2014/09/09/content_281474986284089.htm [pristupljeno 09.02.2022]
- Gu, Y., Li, Y., Li, X., Luo, P., Wang, H. Wang, X., Wu, J., Fengting, L.. Energy Self-sufficient Wastewater Treatment Plants: Feasibilities and Challenges, Energy Procedia, Vol. 105, pp. 3741–3751, https://doi.org/10.1016/j.egypro.2017.03.868
- Rothausen, S., Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nature Climate Change, Vol. 1, pp. 210–219, https://doi.org/10.1038/Nclimate1147
- European Commission, Optimised Renewable Mix for Energy Saving in Waste Water Treatment Plants, https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=searc dspPage&n_proj_id=4903 [pristupljeno 09.02.2022]
- The European Parliament and the Council of the European Union. Water Framework Directive 200/60/EC. https://water.europa.eu/freshwater/europe-freshwater/water-framework- directive [pristupljeno 02.2022]
- European Commission, Standard method and online tool for assessing and improving the energy efficiency of wastewater treatment plants, https://cordis.europa.eu/project/id/649819 [pristupljeno 02.2022]
- Walker, N., Prysor Williams, A., Styles, D. Pitfalls in international benchmarking of energy intensity across wastewater treatment utilities, Journal of Environmental Management, Vol. 300, 113613, https://doi.org/10.1016/j.jenvman.2021.113613
- Zhang, M., Ma, Y. Energy use and challenges in current wastewater treatment plants, A-B processes: Towards Energy Self-sufficient Municipal Wastewater Treatment, Ch. 1, IWA Publishing, London, UK, 2019. https://doi.org/10.2166/9781789060089_0001
- Energy Efficiency Opportunities in Wastewater Treatment Facilities, Office of Environment and Heritage, 2019. https://storage.googleapis.com/kms-appspot.com/sites/continuum/assets/f3f9e3ff-2686-43bc-bab0- 86b469621f2d/wastewater-treatment-facilities-energy-efficiency- opportunities-190114.pdf [pristupljeno 13.02.2022]
- Danish Water and Wastewater Association (DANVA), (2020). Water in figures 2020, http://www.e-pages.dk/danva/242 [pristupljeno 02.2022]
- State of Green, Unlocking the potential of wastewater: using wastewater as a resource while protecting people and ecosystems, 2020. https://stateofgreen.com/en/publications/unlocking-the-potential-of- wastewater-treatment/ [pristupljeno 02.2022]
- Wroblewski, J., Heidrich, Z.. Energochłonność miejskich oczyszczalni ścieków Cz. II, Badania własne, Gaz, Woda i Technika Sanitarna, No. 8, pp. 325-329, 2017. https://doi.org/10.15199/17.2017.9.4
- Hansen, J., Becker, M.. Is the energy-independency already state-of-art at NW-European wastewater treatment plants, Marbella, Spain, 2013.
- Gu, J., Li, J., Li, X., Luo, P., Wang, H., Robinson, Z., Wang, X., Wu, J., Li, F. The feasibility and challenges of energy self-sufficient wastewater treatment plants, Applied Energy, Vol. 204, pp. 1463-1475, 2017. https://doi.org/10.1016/j.apenergy.2017.02.069
- Llácer-Iglesias, R., López-Jiménez, A., Pérez-Sánchez, M. Energy Self- Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?. Sustainability, Vol. 13, No. 10, 5537, https://doi.org/10.3390/su13105537
- Gandiglio, M., Lanzini, A., Soto, A., Leone, P., Santarelli, M. Enhancing the Energy Efficiency of Wastewater Treatment Plants through Co- digestion and Fuel Cell Systems, Frontiers in Environmental Science, Vol. 5, No. 13, 6056, 2017. https://doi.org/10.3389/fenvs.2017.00070
- He, Y., Zhu, Y., Chen, J., Huang, M., Wang, P., Wang, G., Zou, W., Zhou, G. Assessment of energy consumption of municipal wastewater treatment plants in China. Journal of Cleaner Production, Vol. 228, 399-404, 2019. https://doi.org/10.1016/j.jclepro.2019.04.320
- Maslon, A., Czarnota, J., Szaja, A., Szulzyk-Cieplak, J., Lagod, G.The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland, Energies, Vol. 13, No. 22, pp. 6056, 2020. https://doi.org/10.3390/en13226056
- S. Department of Energy, Energy Data Management Manual for the Wastewater Treatment Sector, 2017. https://www.energy.gov/eere/slsc/downloads/energy-data-management- manual-wastewater-treatment-sector [pristupljeno 01.03.2022]
- Li, Z., Zou, Z., Wang, Analysis and Forecasting of the Energy Consumption in Wastewater Treatment Plant, Mathematical Problems in Engineering, Vol. 2019, pp. 1-8, 8690898, 2019. https://doi.org/10.1155/2019/8690898
- 4 Ways To Create A More Energy Efficient Wastewater Treatment Plant, https://www.oxymem.com/blog/4-ways-to-create-a-more-energy-efficient- wastewater-treatment-plant [pristupljeno 03.2022]
- Salkić, H., Softić, A., Salkić, A. Uticaj solarne elektrane na kvalitet električne energije u niskonaponskoj distributivnoj mreži, Energija, ekonomija, ekologija, Vol. 22, No. 1-2, pp. 137-144, 2020. https://doi.org/10.46793/EEE20-1-2.137S
- Babić, M. Istraživanje mogućih scenarija energetske budućnosti Republike Srbije uz pomoć backcasting methodology i softvera Energovizija MB, Energija, ekonomija, ekologija, Vol. 22, No. 1-2, pp. 1-9, 2020. https://doi.org/10.46793/EEE20-1-2.001B
- Aziz, N., Ramli, N., Hamid, M. Energy efficiency of wastewater treatment plant through aeration system, Desalination and Water Treatment, 156, pp. 38-45, 2019. https://doi.org/10.5004/dwt.2019.24134
- Kato, H., Fujimoto H., Yamashina K. Operational Improvement of Main Pumps for Energy-Saving in Wastewater Treatment Plants, Water, Vol. 11, No. 12, 2438, 2019. https://doi.org/10.3390/w11122438
- Kim, Y., Yoon, S., Mun, C., Kim, T., Kang, D., Sim, M., Hwang, E. Smart Day-ahead Pump Scheduling Scheme for Electricity Cost Optimization in a Sewage Treatment Plant, Water Conservation Science and Engineering, Vol. 6, pp. 79-94, 2021. https://doi-org.libproxy.viko.lt/10.1007/s41101- 021-00104-1
- Ekici, K.. Energy Saving Preventions for Aeration Process in Wastewater Treatment Plant, 2017. https://doi.org/10.13140/RG.2.2.17054.74567
- Krstić, N., Klimenta, D.,Tasić, D., Radosavljević, D. Određivanje optimalnih nagibnih uglova fotonaponskih panela uz uvažavanje smanjenja direktne komponente iradijacije usled efekata senki u fotonaponskim sistemima, Energija, ekonomija, ekologija, Vol. 23, No. 3, pp. 45-53, 2021. https://doi.org/10.46793/EEE21-3.45K
- Antonijević, V., Mlađenović, L., Dobrić, G., Žarković, M. Optimalno dimenzionisanje mikromreže sa obnovljivim izvorima energije u Srbiji, Energija, ekonomija, ekologija, Vol. 23, No. 4, pp. 16-22, 2021. https://doi.org/10.46793/EEE21-4.16A
- Mizuta, K., Shimada, M. Benchmarking energy consumption in municipal wastewater treatment plants in Japan, Water Science & Technology, Vol. 62, No. 10, pp. 2256-2262, 2010. https://doi.org/10.2166/wst.2010.510
- Despotović, Ž., Rodić, A., Stevanović, I., Sistem napajanja i pametno upravljanje poljoprivrednim zemljištem korišćenjem obnovljivih izvora energije, Energija, ekonomija, ekologija, Vol. 24, No. 1, pp. 28-39, https://doi.org/10.46793/EEE22-1.28D
- Guo, Z., Sun, .J., Pan, Y., Chiang, C.. Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants, International Journal of Environmental Research and Public Health, Vol. 16, No. 7, 1282, 2019. https://doi.org/10.3390/ijerph16071282
- Strazzabosco, , Kenway, J., Lant, A. Solar PV adoption in wastewater treatment plants: A review of practice in California, Journal of Environmental Management, Vol. 248, 109337, 2019. https://doi.org/10.1016/j.jenvman.2019.109337
- Gupta, K., Ali, I., Saleh, A., Nayak, A., Agarwal, S. Chemical treatment technologies for waste-waterrecycling-an overview, RSC Advances, Vol. 12, No.16, pp. 6380-6388, 2012. https://doi.org/10.1039/C2RA20340E
- Sun, Y., Lu, M., Sun, Y., Chen, Z., Duan, H., Liu, D. Application and Evaluation of Energy Conservation Technologies in Wastewater Treatment Plants, Applied Sciences, Vol. 9, 4501, https://doi.org/10.3390/app9214501
- The world’s first solar folding roof, HORIZON, was built over the wastewater treatment plant of the city of Chur, Switzerland, https://dhp- ch/en/referenz/the-worlds-first-solar-folding-roof-horizon-was- built-over-the-wastewater-treatment-plant-of-the-city-of-chur-switzerland [pristupljeno 05.03.2022]
- Taha, M., Al-Sa`ed, R. Potential application of renewable energy sources at urban wastewater treatment facilities in Palestine – three case studies, Desalination and water treatment, Vol. 94, pp. 64-71, 2017. https://doi.org/10.5004/dwt.2017.21591
- Hao, X., Liu, R., Huang, X.. Evaluation of the potential for operating carbon neutral WWTPs in China, Water Research, Vol. 87, pp. 424-431, 2015. https://doi.org/10.1016/j.watres.2015.05.050
- Tzen, E. Renewable Energy Sources for Wastewater Treatment Plants. Frontiers, in Proc. International Conference on wastewater treatment – FICWTM2017, Palermo, Italy, 2017. https://www.researchgate.net/publication/321755190_Renewable_Energy_ Sources_for_Wastewater_Treatment_Plants [pristupljeno 03.2022]
- Greenskies, Greenskies finishes 137-kW solar array at water treatment plant, https://www.greenskies.com/about/news/greenskies-finishes-137-kw- solar-array-water-treatment-plant [pristupljeno 03.2022]
- Lertpocasombut, K., Sirimontree, S., Witchayangkoon, B., Thongchom, C., Winoto, V., Keawsawasvong, S. The Renewable Energy Sources for Municipal Wastewater Processes in Thailand: A Case Study of the Nonthaburi Wastewater Treatment Plant, Civil and Environmental Engineering, Vol. 17, No. 2, pp. 395-400, 2021. https://doi.org/10.2478/cee- 2021-0042
- Brachi, P., Di Fraia, S., Massarotti, N., Vanoli, Combined heat and power production based on sewage sludge gasification: An energy-efficient solution for wastewater treatment plants, Energy Conversion and Management: X, Vol. 13, 100171, 2022. https://doi.org/10.1016/j.ecmx.2021.100171
- Sarpong, G., Gude, G. Codigestion and combined heat and power systems energize wastewater treatment plants – Analysis and case studies. Renewable and Sustainable Energy Reviews, Vol. 144, 110937, 2021. https://doi.org/10.1016/j.rser.2021.110937
- Oregon WWTP’s Energy Net Zero Journey, 2015. https://www.biocycle.net/oregon-wwtps-energy-net-zero-journey/ [pristupljeno 03.2022]
- Aarhus Vand, A. Achieving 150% energy self-sufficiency at Marselisborg Wastewater Treatment Plant, https://www.aarhusvand.dk/en/international/about-us/news/achieving-150- energy-self-sufficiency-at-marselisborg-wwtp/ [pristupljeno 03.2022]