Chemia Naissensis Volume 3, No.1 (2020) (стр. 50-70)
АУТОР(И) / AUTHOR(S): Azhar Abbas, Hatem M. A. Amin, Muhammad Akhtar, Muhammad A. Hussain, Christopher Batchelor-McAuley, Richard G. Compton
Е-АДРЕСА / E-MAIL: azharabbas73@yahoo.com
DOI: 10.46793/ChemN3.1.050A
САЖЕТАК / ABSTRACT:
A facile green method is used to synthesize silver nanoparticles (Ag Nps) in one minute. The colloidal stability of two types of Ag Nps (namely, hydroxypropylcellulose-succinate (HPC-Suc) capped silver nanoparticles (Ag Nps@suc) and citrate-capped silver nanoparticles (Ag Nps@cit)) is investigated using UV-Vis spectrometry and electrochemical particle impacts “nano-impacts” measurements. Ag Nps@suc were newly synthesized by simply mixing aqueous solutions of HPC-Suc and silver nitrate and exposure to sunlight. The growth of Ag Nps was controlled by adjusting the exposure time to sun light. Local surface plasmon resonance (LSPR) study was conducted using UV-Vis spectrophotometer. The surface morphology, size, elemental analysis and composition of Ag NPs@suc was determined by SEM-EDX, while ATR-FTIR was used to assess any type of chemical reactions between the precursors. For stability and size distribution measurements zeta-potential (ZP), dynamic light scattering (DSL) and anodic particle coulometry (APC) were performed. The as-prepared Ag Nps@suc exhibited a narrow size distribution with an average diameter of 20 nm. Nps sizing using particles electrochemical impacts method is consistent with SEM and DLS techniques. The results show that Ag Nps@cit are prone to relatively rapid clustering upon addition of electrolyte (100 mM K2SO4). On the other hand, Ag Nps@suc exhibit excellent stability with only ~ 9% decay in absorbance over 24 h even at high electrolyte concentration. Using KCl, KBr and NaCl electrolytes, the stability of the synthesized Ag Nps@suc also compares favorably to Ag Nps@cit.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Silver nanoparticles, Succinate capping agent, Nanoparticle stability, UV-Vis spectrometry, Nanoparticle-electrode impact
ЛИТЕРАТУРА / REFERENCES:
- Abbas, A., Hussain, M.A., Amin, M., Tahir, M.N., Jantan, I., Hameed, A., & Bukhari, S.N.A. (2015). Multiple cross-linked hydroxypropylcellulose–succinate–salicylate: prodrug design, characterization, stimuli responsive swelling–deswelling and sustained drug release. RSC Advances, 5, 43440-43448.
- Abdelgawad, A.M., El-Naggar, M.E., Eisa, W.H., & Rojas, O.J. (2017). Clean and high-throughput production of silver nanoparticles mediated by soy protein via solid state synthesis. Journal of Cleaner Production, 144, 501-510.
- Afshinnia, K., Sikder, M., Cai, B., & Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics. Journal of Colloid and Interface Science, 487, 192-200.
- Allerston, L.K., & Rees, N.V. (2018). Nanoparticle impacts in innovative electrochemistry. Current Opinion in Electrochemistry, 10, 31-36.
- Amin, H.M.A., Baltruschat, H., Wittmaier, D., & Friedrich, K.A. (2015). A highly efficient bifunctional catalyst for alkaline air-electrodes based on a Ag and Co3O4 hybrid: RRDE and online DEMS insights. Electrochimica Acta, 151, 332-339.
- Amin, H.M.A., Bondue, C.J., Eswara, S., Kaiser, U., & Baltruschat, H. (2017). A carbon-free Ag–Co3O4 composite as a bifunctional catalyst for oxygen reduction and evolution: spectroscopic, microscopic and electrochemical characterization. Electrocatalysis, 8, 540-553.
- Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. NanoImpact, 6, 55-68.
- Banach, M., & Pulit-Prociak, J. (2017). Proecological method for the preparation of metal nanoparticles. Journal of Cleaner Production, 141, 1030-1039.
- Bastús, N.G., Merkoçi, F., Piella, J., & Puntes, V. (2014). Synthesis of highly monodisperse citrate- stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chemistry of Materials, 26, 2836-2846.
- Batchelor-McAuley, C., Ellison, J., Tschulik, K., Hurst, P.L., Boldt, R., & Compton, R.G. (2015). In situ nanoparticle sizing with zeptomole sensitivity. Analyst, 140, 5048-5054.
- Einstein, A. (1905). On the movement of small particles suspended in stationary liquids required by molecular-kinetic theory of heat. Annalen der Physik, 17, 549−560.
- Ellison, J., Tschulik, K., Stuart, E.J.E., Jurkschat, K., Omanovic´, D., Uhlemann, M., Crossley, A., & Compton, R.G. (2013). Get more out of your data: a new approach to agglomeration and aggregation studies using nanoparticle impact experiments. ChemistryOpen, 2, 69-75.
- Gupta, K., Jana, P.C., & Meikap, A.K. (2010). Optical and electrical transport properties of polyaniline– silver nanocomposite. Synthetic Metals, 160, 1566-1573.
- Hayward, R.C., Saville, D.A., & Aksay, I.A. (2000). Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, 404, 56-59.
- Huynh, K.A., & Chen, K.L. (2011). Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science and Technology, 45, 5564-5571.
- Jang, M.-H., Bae, S.-J., Lee, S.-K., Lee, Y.-J., & Hwang, Y.S. (2014). Effect of material properties on stability of silver nanoparticles in water. Journal of Nanoscience and Nanotechnology, 14, 9665-9669.
- Jiao, X., Sokolov, S.V., Tanner, E.E.L., Young, N.P., & Compton, R.G. (2017). Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates. Physical Chemistry Chemical Physics, 19, 64-68.
- Kätelhön, E., Sokolov, S.V., Bartlett, T.R., & Compton, R. G. (2017). The role of entropy in nanoparticle agglomeration. Chemphyschem, 18 51-54.
- Kätelhön, E., Tanner, E. E. L., Batchelor-McAuley, C., & Compton, R.G. (2016). Destructive nano- impacts: What information can be extracted from spike shapes? Electrochimica Acta, 199, 297-304.
- Khan, M., Khan, S.T., Khan, M., Adil, S.F., Musarrat, J., Al-Khedhairy, A.A., Al-Warthan, A., Siddiqui, M.R.H., & Alkhathlan, H.Z. (2014). Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. International Journal Nanomedicine, 9, 3551- 3565.
- Korshed, P., Li, L., Ngo, D.-T., & Wang, T. (2018). Effect of storage conditions on the long-term stability of bactericidal effects for laser generated silver nanoparticles. Nanomaterials, 8, 1-12.
- Lees, J.C., Ellison, J., Batchelor-McAuley, C., Tschulik, K., Damm, C., Omanovic, D., & Compton, R.G. (2013). Nanoparticle impacts show high‐ionic‐strength citrate avoids aggregation of silver nanoparticles. ChemPhysChem, 14, 3895-3897.
- Little, C.A., Li, X., Batchelor-McAuley, C., Young, N.P., & Compton, R.G. (2018). Particle-electrode impacts: Evidencing partial versus complete oxidation via variable temperature studies. Journal of Electroanalytical Chemistry, 823, 492-498.
- Luo, C., Zhang, Y., Zeng, X., Zeng, Y., & Wang, Y. (2005). The role of poly(ethylene glycol) in the formation of silver nanoparticles. Journal of Colloids and Interface Science, 288, 444-448.
- Mfouo-Tynga, I., El-Hussein, A., Abdel-Harith, M., & Abrahamse, H. (2014). Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. International Journal of Nanomedicine, 9, 3771-3780.
- Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788-800. Ngamchuea, K., Batchelor-McAuley, C., Sokolov, S.V., & Compton, R.G. (2017). Dynamics of silver nanoparticles in aqueous solution in the presence of metal ions. Analytical Chemistry, 89, 10208-10215. Ngamchuea, K., Clark, R.O.D., Sokolov, S.V., Young, N.P., Batchelor-McAuley, C., & Compton, R.G. (2017b). Single oxidative collision events of silver nanoparticles: understanding the rate‐determining chemistry. Chemistry. A European Journal, 23, 16085-16096.
- Peijnenburg, W.J.G.M., Baalousha, M., Chen, J., Chaudry, Q., Von der Kammer, F., Kuhlbusch, T.A.J., Lead, J., Nickel, C., Quik, J.T.K., Renker, M., Wang, Z., & Koelmans, A.A. (2015). A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Critical Reviews in Environmental Science and Technology, 45, 2084-2134.
- Raveendran, P., Fu, J., & Wallen, S.L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125, 13940-13941.
- Rees, N.V., Zhou, Y.-G., & Compton, R.G. (2011). The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. ChemPhysChem, 12, 1645-1647.
- Richard, D., Couves, J.W., & Thomas, J.M. (1991). Structural and electronic properties of finely-divided supported Pt-group metals and bimetals. Faraday Discussions, 92, 109-119.
- Shamaila, S., Sajjad, A.K.L., Ryma, N.-ul-A., Farooqi, S.A., Jabeen, N., Majeed, S., & Farooq, I. (2016). Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 5, 150-199.
- Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M., & Abdollahi, Y. (2012). Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. International Journal of Molecular Sciences, 13, 6639-6650.
- Shimizu, K., Sokolov, S.V., Young, N.P., & Compton, R.G. (2017). Particle-impact analysis of the degree of cluster formation of rutile nanoparticles in aqueous solution. Physical Chemistry Chemical Physics, 19, 3911-3921.
- Shipway, A.N., Katz, E., & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 1, 18-52.
- Sokolov, S.V., Eloul, S., Kätelhön, E., Batchelor-McAuley, C., & Compton, R.G. (2017). Electrode– particle impacts: a users guide. Physical Chemistry Chemical Physics, 19, 28-43.
- Stankus, D.P., Lohse, S.E., Hutchison, J.E., & Nason, J.A. (2011). Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environmental Science & Technology, 45, 3238-3244.
- Stevenson, K.J., & Tschulik, K. (2017). A materials driven approach for understanding single entity nano impact electrochemistry. Current Opinion in Electrochemistry, 6, 38-45.
- Stuart, E.J.E., Rees, N.V., Cullen, J.T., & Compton, R.G. (2013). Direct electrochemical detection and sizing of silver nanoparticles in seawater media. Nanoscale, 5, 174-177.
- Suherman, A.L., Zampardi, G., Kuss, S., Tanner, E.E.L., Amin, H.M.A., Young, N.P., & Compton, R.G. (2018). Understanding gold nanoparticle dissolution in cyanide-containing solution via impact-chemistry. Physical Chemistry Chemical Physics, 20, 28300-28307.
- Xie, J., Lee, J.Y., Wang, D.I.C., & Ting, Y.P. (2007). Silver nanoplates: from biological to biomimetic synthesis. ACS Nano, 1, 429-439.
- Zampardi, G., Thöming, J., Naatz, H., Amin, H.M.A., Pokhrel, S., Mädler, L., & Compton, R.G. (2018). Electrochemical behavior of single CuO nanoparticles: implications for the assessment of their environmental fate. Small, 14, 1801765.
- Zhao, Q., Duan, R., Yuan, J., Quan, Y., Yang, H., & Xi, M. (2014). A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array. International Journal Nanomedicine, 9, 1097-1104.
- Zhou, Y.-G., Rees, N.V., Pillay, J., Tshikhudo, R., Vilakazi, S., & Compton, R.G. (2012). Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chemical Communications, 48, 224-226.