Kinetic and Thermodynamic Parameters for Degradation of Anthocyanins from Red Currant and Sour Cherry Juices by Hydrogen Peroxide in the Presence of Cu(II)

Chemia Naissensis Volume 2, No.1 (2019) (str. 76-95) 

AUTOR(I) / AUTHOR(S): Jovana Lj. Pavlović, Milan N. Mitić, Sonja M. Janković

E-ADRESA / E-MAIL: jovanapavlovic@ymail.com

Download Full Pdf   

DOI: 10.46793/ChemN2.1.076P

SAŽETAK / ABSTRACT:

The kinetics of anthocyanins degradation in the red currant and sour cherry juices by hydrogen peroxide at pH 3.5 was investigated. The reaction was catalyzed by the trace of Cu (II), and it was followed spectrophotometrically at 520 nm by applying the initial-rate method. The reaction kinetic parameters are reported, and the rate equation is suggested. From the dependence of the rate constants on the temperature, the activation energy was calculated: 25.76 and 30.59 kJ mol-1 for the red currant and sour cherry juices, respectively. The thermodynamic functions of activation (ΔG*, ΔH* and ΔS*) have been determined to understand red currant and sour cherry juice anthocyanins degradation.

KLJUČNE REČI / KEYWORDS:

red currant, sour cherry, anthocyanins, kinetic parameters, thermodynamic functions

LITERATURA / REFERENCES:

  • Alecu, A., Sauicier, C., & Cretescu, I. (2008). The study of catalytic degradation of malvidin-3- glucoside from red wines, using molecular absorption spectrophotometry. Revista de Chimie, 59, 314-317.
  • Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry, 58, 3901-3909.
  • Castaneda-Ovando, A., Pacheco-Hernandez, M. L., Paez-Hernandez, M. E., Rodriguez, J. A., & Galan-Vidal, C. A. (2009). Chemical studies of anthocyanins: a review. Food Chemistry, 113, 859-871.
  • Damar, I., & Eksi, A. (2012). Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chemistry, 135, 2910-2914.
  • De, A. K., Chaudhuri, B., & Bhattacharjee, S. (1999). A kinetic study of the oxidation of phenol, o-chlorophenol, and catechol by hydrogen peroxide between 298 K and 333 K; the effect of pH, temperature, and ratio of oxidant to substrate. Journal of Chemical Technology and Biotechnology, 74, 162-168.
  • Garzon, G. A., & Wrolstad, R. E. (2002). Comparison of the stability of pelargonidin-based anrhocyanins in strawberry juice and concentrate. Journal of Food Science, 64, 1288-1299.
  • Harbourne, N., Jacquier, J. Ch., Morgan, D. J., & Lyng, J. G. (2008). Determination of the degradation kinetics of anthocyanins in the model juice system using isothermal and non- isothermal methods. Food Chemistry, 111, 2004-2008.
  • Hellstrom, J., Mattila, P., & Karjalainen, R. (2013). Stability of anthocyanins in berry juices strored at different temperatures. Journal of Food Composition and Analysis, 31, 12-19.
  • Hillmann, M. C. R., Burin, V. M., & Bordignon-Luiz, M. T. (2011). Thermal degradation kinetics of anthocyanins in grape juice and concentrate. International Journal of Food Science and Technology, 46, 1997-2000.
  • Kechinski, C. P., Guimaraes, P. V. R., Norena, C. P. Z., Tessaro, I. C., & Marczak, L. D. F. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science, 75, C173-C176.
  • Kirca, A., & Cemeroglu B. (2003). Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chemistry, 81, 583-587.
  • Kirca, A., Özkan, M., & Cemoreoglu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101, 212-218.
  • Kong, J.-S., Chia, L.-S., Goh, N.-K., Chia, T. F., & Brouillard, R. (2003). Analysis biological activities of anthocyanins. Phytochemistry, 64, 923-933.
  • Liu, J., Dong, N., Wang, Q., Li, J., Guiming, Q., Fan, H., & Zhao, G. (2014). Thermal degradation kinetics of anthocyanins from Chinese red radish (Raphanus sativus L.) in various juice beverages. European Food Research and Technology, 238, 177-184.
  • Lopes, P., Richard, T., Saucier, C., Teissedre P. L., Monti, J. P., & Glories, Y. (2007). Anthocyanine A: a quinone methide derivative resulting from malvidin 3-O-glucoside degradation. Journal of Agricultural and Food Chemistry, 55, 2698-2704.
  • Matta, R., Hanna, K., & Chiron, S. (2008). Oxidation of phenol by green rust and hydrogen peroxide at natural pH. Separation and Purification Technology, 61, 442-446.
  • Mercali, G. D., Jaeschke, D. P., Tessaro, I. C., Marczak, L. D. F. (2013). Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food Chemistry, 136, 853-857.
  • Määttä, K., R., Kamala-Eldin, A., & Törrönen, R. (2003). High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. Journal of Agricultural and Food Chemistry, 51, 6736-6744.
  • Nichenametla, S. N., Taruscio, T. G., Barney, D. L., & Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46, 161-183.
  • Nikkhah, E., Khaiamy, M., Heidary, R., & Azar, A. S. (2010). The effect of ascorbic acid and H2O2 treatment on the stability of anthocyanin pigments in berries. Turkish Journal of Biology, 34, 47-53.
  • Ruenroengklin, N., Yang, B., Lin, H., Chen, F., & Jiang, Y. (2009). Degradation of anthocyanin from litchi fruit pericarp by H2O2 and hydroxyl radical. Food Chemistry, 116, 995-998.
  • Salem, I. A., El-Maazawi, M., & Zaki, A. B. (2000). Kinetics and mechanisms of decomposition reaction of hydrogen peroxide in presence of metal complexes. International Journal of Chemical Kinetics, 643-665.
  • Song, J., Li, X., Zeng, L., Liu, H., Xie, M. (2011). Determination of cyanidin-3-glucoside (red kernel food color) in beverages by high performance liquid chromatography and a study of its degradation by quadruple time-of-flight mass spectrometry. Food Additives and Contaminants, 28, 1645-1656.
  • Stewart, R. (1964). Oxidation Mechanisms. New York, Benjamin.
  • Strinzing, F. C., Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food and human nutrition. Trends in Food Science & Technology, 51, 19-38.
  • Summen, M. A., Erge, H. S. (2014). Thermal degradation kinetics of bioactive compounds and visual color in raspberry pulp. Journal of Food Processing and Preservation, 38, 551-557.
  • Toralles, R. P., Vendruscolo, J. L., Vendruscolo, C. T., del Pino, F. A. B., & Antunes, P. L. (2008). Determination of reaction rate constants for ascorbic acid degradation in peach puree: effect on temperature and concentration. Ciência e Tecnologia de Alimentos, 28, 18-23.
  • Wang, W. D., & Xu, S. Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82, 271-275.
  • Özkan, M., Yemenicioglu, N., & Cemeroglu, B. (2002). Degradation kinetics of anthocyanins from sour cherry, pomegranate, and strawberry juices by hydrogen peroxide. Journal of Food Science, 67, 525-529.