SUITABILITY OF THE SELECTED LOCAL MAIZE HYBRIDS FOR SILAGE PRODUCTION

Savetovanje o biotehnologiji sa međunarodnim učešćem (Čačak: 27; 2022) (str. 105-110)

АУТОР(И): Valentina Nikolić, Marijana Simić, Slađana Žilić, Natalija Kravić, Vojka Babić, Milomir Filipović, Jelena Srdić

Е-АДРЕСА: valentinas@mrizp.rs

Download Full Pdf   

DOI: 10.46793/SBT27.105N

САЖЕТАК:

The main goal of this study was to observe the properties of fifteen different genotypes of maize hybrids from Serbia in order to determine their suitability for the production of high-quality silage for ruminant feed. The research was conducted in a two-year field experiment at the location of the Maize Research Institute in Zemun Polje, Serbia, and the laboratory analyses included yield structure of the investigated maize hybrids, assessment of the lignocellulosic fiber composition, as well as the in vitro dry matter digestibility of the whole plant samples. All maize hybrids have shown good quality traits that are a prerequisite for the production of high-quality silage.

КЉУЧНЕ РЕЧИ:

maize hybrids, lignocellulosic fibres, in vitro dry matter digestibility, silage

ЛИТЕРАТУРА:

  • Aufrere, J., Baumont, R., Delaby, L., Peccatte, J.-R., Andrieu, J., Andrieu, J.-P., Dulphy J.-P. (2007). Prevision de la digestibilite des fourages par la méthode pepsine- cellulase. Le point sur les équations proposées. INRA  Productions Animales, 20, 129-136.
  • Barrière, Y., Guillaumie, S., Denoue, D., Pichon, M., Goffner, D., Martinant, J. (2018). Investigating the unusually high cell wall digestibility of the old INRA early flint F4 maize inbred line. Maydica, 62 (3), 21. https://journals- crea.4science.it/index.php/maydica/article/view/1581
  • Bertoia, L. M., & Aulicino, M. B. (2014). Maize forage aptitude: Combining ability of inbred lines and stability of hybrids. The Crop Journal, 2, 407-418.
  • Bittman, S. (2004). A production guide for coastal British Columbia and the Pacific Northwest. Quality of corn silage (Chapter 8). In Shabtai Bittman & C. Grant Kowalenko (Eds.), Advanced silage corn management. Agassiz: Pacific Field Corn Associa-tion.
  • Mertens, D.R. (1992). Critical conditions in determining detergent fiber. In Proceedings of the Forage Analysis Workshop (pp. C1–C8). Denver, Colorado. Omaha, NE: National Forage Testing Association.
  • Nikolić, V. V., Žilić, S. M., Radosavljević, M. M., Vančetović, J. P., Božinović, S. S. (2020). Properties of different silage maize hybrids. Food and Feed Research, 47(2), 139-147.
  • Johnson, L., Harrison, J. H., Hunt, C., Shinners, K., Doggett, C. G., & Sapienza, D. (1999). Nutritive value of corn silage as affected by maturity and mechanical processing: A contemporary review. Journal of dairy science, 82(12), 2813-2825.
  • Van Soest, P.J., Robertson, J.B. (1980). System of analysis for evaluating fibrous feeds. In W. J. Pigden, C. C. Balch & M. Graham (Eds.), Standardization of analytical methodology in feeds (pp. 49-60). Ottawa, Canada: International Re- search Development Center.
  • Terzić, D., Radosavljević, M., Milašinović-Šeremešić, M., Jovanović, Ž., Nikolić, V., (2020). Yield and biomass quality of the whole plant of four maize hybrids for silage production. Journal on Pro-cessing and Energy in Agriculture, 24, 6-8. https://doi.org/10.5937/jpea24-25502
  • Shahbandeh, M. (2021). Corn production worldwide 2014-2021. Statista, https://www.statista.com/statistics/1156213/global-corn-production/
  • Sutch, R. (2011). The impact of the 1936 Corn Belt Drought on American farmers’ adoption of hybrid corn. In G. D. Libecap & R. H. Steckel (Eds.), The economics of climate change: Adaptations past and present (pp. 195 – 223). Chicago: University of Chicago Press.