MODELIRANJE UTICAJA UNOSA TOPLOTE NA GEOMETRIJU UGAONIH SPOJEVA PRI MAG ZAVARIVANJU U RAZLIČITIM POZICIJAMA

33. Savetovanje sa međunarodnim učešćem Zavarivanje 2024, (p. S2.3)

AUTHOR(S) / АУТОР(И): Petar Tasić , Ismar Hajro 

Download Full Pdf   

DOI: 10.46793/Zavarivanje24.S2.3T

ABSTRACT / САЖЕТАК:

Jedan od najčešće korištenih postupaka za zavarivanje nelegiranih konstrukcionih čelika je MAG, s obzirom da je relativno jednostavan i ima veliku brzinu deponovanja. Sa druge strane, postoje standardi koji definišu kvalitet zavarenih spojeva s obzirom na njegove geometrijske karakteristike. Ovaj rad opisuje uticaj unosa toplote na geometriju ugaonih spojeva pri MAG zavarivanju limova od nelegiranog čelika debljine 8 mm u položenoj i nadglavnoj poziciji. Parametri koji su nezavisno varirani su jačina struje i brzina zavarivanja. Uticaj je predstavljen pomoću modela koji se baziraju na linearnoj regresionoj analizi. Izvršeno je međusobno poređenje modela razvijenih za različite pozicije, kao i poređenje sa modelima dostupnim u literaturi.

KEYWORDS / КЉУЧНЕ РЕЧИ:

unos toplote, MAG, ugaoni spoj, geometrija zavara, nelegirani čelik

REFERENCES / ЛИТЕРАТУРА:

  1. Girón‑Cruz, J. A., Pinto‑Lopera, J. E., Alfaro, S. C. A., Weld bead geometry real‑time control in gas metal arc welding processes using intelligent systems, The International Journal of Advanced Manufacturing Technology, 123, 2022, pp. 3871-3884.
  2. Yaakub, M. Y., et al., Prediction of Welding Parameters and Weld Bead Geometry for GMAW Process in Overhead T-Fillet Welding Position (4F), Advanced Materials Research, 686 (2013), pp. 320-324.
  3. Popescu, M., Welding Ergonomics – Elements, Proceedings of the 21st International DAAAM Symposium, Zadar, Croatia, October 20-23, 2010
  4. Czifra, J., Vicikova, J., Szabo, P., Automated production system for pipelines of vessels, Proceedings of the 21st International DAAAM Symposium, Zadar, Croatia, October 20-23, 2010
  5. Tham, G., et al., Predicting the GMAW 3F T-Fillet Geometry and Its Welding Parameter, Procedia Eng., 41 (2012), pp. 1794-1799.
  6. Filho, C. A. M. D., et al., Weld bead geometry prediction using artificial neural networks and genetic algorithm hybrid model in GMAW, Proceedings of 27th International Congress of Mechanical Engineering, Florianopolis, Brazil, December 4-8, 2023
  7. Maraki, M. R., et al., Prediction and optimization of weld geometry in gas metal arc welding (GMAW) using least squares support vector machine, Journal of Welding Science and Technology of Iran, 8 (2023), ISSN: 2676-6787
  8. Tasic, P., et al., Prediction of Geometry of Pulsed GMAW Fillet Welded Joints of Structural Steels, Proceedings of the 31st DAAAM International Symposium, Mostar, B&H, October 21-24, 2020, pp. 444-0452
  9. Åstrand, E., Öberg, A. E., Jonsson, B., Cost Affecting Factors Related to Fillet Joints, in: Design, Fabrication and Economy of Metal Structures, Springer, 2013.
  10. Bosworth, M. R., Effective Heat Input in Pulsed Current Gas Metal Arc Welding with Solid Wire Electrodes, Welding Journal (Supplement), (1991), pp. 111-117.
  11. Miller, D. K., Funderburk R. S., Tools for reviewing Welding Procedures, Welding Journal, 80 (2001), 7, pp. 40-43.
  12. Gucwa, M., Beczkowski, R., The Effect of Heat Input on the Geometric Properties of Welded Joints, Archives of Foundry Engineering, 14 (2014), pp. 127-130., ISSN 1897-3310
  13. Ribeiro, R. A., et al., Predicting Weld Bead Geometry in the Novel CWGMAW Process, Welding Journal, 94 (2015) 9, pp. 301-311., ISSN 0043-2296
  14. Khalaf, G. H., Neuro-fuzzy control modelling for gas metal arc welding process, Ph. D. thesis, Department of Manufacturing Engineering, Loughborough University, Loughborough, UK, 1998
  15. Benyounis, K. Y., Prediction and optimization of residual stresses, weld­bead profile and mechanical properties of laser welded components, Ph. D. thesis, Dublin City University, Ireland, 2006
  16. Khrais, S., Al Hmoud, H., Al, A. A., Darabseh, T., Impact of Gas Metal ArcWelding Parameters on Bead Geometry and Material Distortion of AISI 316L, Journal of Manufacturing and Materials Processing, 7 (2023)
  17. He, Y., et al., Dynamic Modeling of Weld Bead Geometry Features in Thick Plate GMAW Based on Machine Vision and Learning, Sensors, 20 (2022)
  18. Biber, A., Sharma, R., Reisgen, U., Robotic welding system for adaptive process control in gas metal arc Welding, Welding in the world, 68 (2024), pp. 2311-2320.
  19. Lima, E. J., et al., Development of a model to predict weld bead geometry during the GMAW process using high speed camera, Proceedings of 7th International conference Trends in Welding Research, Pine Mountain, USA, May16-20, 2005
  20. Silva, R. H. G., et al., An adaptive orbital system based on laser vision sensor for pipeline GMAW welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (2021)
  21. Hajro, I., Tasic, P., Influence of heat input and welding position on geometrical properties of GMAW fillet welds of unalloyed steel, TEM Journal, 9 (2020) 2, pp. 496-500.