Development and Solving of Constrained Laser Cutting Optimization Model

XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 138-141)

АУТОР(И) / AUTHOR(S): Miloš Madić , Milan Trifunović , Saša S. Nikolić , Nikola Danković

Download Full Pdf  

DOI:  10.46793/SAUM24.138M

САЖЕТАК / ABSTRACT:

Exploiting the multiple advantages of laser cutting technology, in terms of cut quality, productivity, cutting costs, etc., requires careful consideration of laser cutting parameters and their optimization. Therefore, development and solving optimization models are of high importance. In the present study, in order to determine optimized cutting conditions for minimization of the total cutting time in CO2 laser cutting of mild steel, a laser cutting optimization model was developed. Three power models and one logistic regression model, developed in terms of laser power, cutting speed and oxygen pressure, were integrated and used as functional constraints to consider cut quality characteristics such as perpendicularity deviation, cut surface roughness, kerf width and dross formation. The formulated single-objective laser cutting optimization model with functional constraints was solved by the application of the genetic algorithm.

КЉУЧНЕ РЕЧИ / KEYWORDS:

CO2 laser cutting, cutting time, empirical models, optimization, genetic algorithm

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

This research was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Contracts No. 451-03-65/2024-03/200109 and 451-03-66/2024-03/200102).

ЛИТЕРАТУРА / REFERENCES:

  1. Madić, M. Trifunović and T. Janković, „Development and analysis of surface roughness model in dry longitudinal turning of C45E steel“. Innov. Mech. Eng., vol. 1, pp. 11-21, 2022.
  2. Baralić, A. Mitrović, S. Petrović Savić, S. Đurović and B. Nedić, „Neural network for enhancement of end milling processes through accurate prediction of temperature in the cutting zone“. J. Brazilian Soc. Mech. Sci. Eng., vol. 46, 328, 2024.
  3. Y. Lee, H. S. Liu and Y. S. Tarng, „Modeling and optimization of drilling process“, J. Mater. Process. Technol., vol. 74, pp. 149-157, 1998.
  4. Adarsha Kumar, C. Ratnam, K. Venkata Rao and B. S. N. Murthy, „Experimental studies of machining parameters on surface roughness, flank wear, cutting forces and work piece vibration in boring of AISI 4340 steels: modelling and optimization approach“, SN Appl. Sci., vol. 1, 26, 2019.
  5. A. Karthick, S. R. Kumar, P. Prathap, K. Ragul and K. S. Raghul, „Optimization of reaming parameters to improve surface roughness of En1A leaded material with the approach of particle swarm optimization“, Mater. Today: Proc., 37, vol. 37, pp. 1003-1008, 2021.
  6. Domingo, B. De Agustina and M. M. Marín, „A multi-response optimization of thrust forces, torques, and the power of tapping operations by cooling air in reinforced and unreinforced polyamide PA66“, Sustain., vol. 10, 889, 2018.
  7. Brinksmeier, H. K. Tönshoff, C. Czenkusch and C. Heinzel, „Modelling and optimization of grinding processes“, J. Intell. Manuf., vol. 9, pp. 303-314, 1998.
  8. Madić, S. Mladenović, M. Gostimirović, M. Radovanović and P. Janković, „Laser cutting optimization model with constraints: Maximization of material removal rate in CO2 laser cutting of mild steel“, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., vol. 234, pp. 1323-1332, 2020.
  9. Gostimirović, V. Pucovsky, M. Sekulić, M. Radovanović and M. Madić, „Evolutionary multi-objective optimization of energy efficiency in electrical discharge machining“, J. Mech. Sci. Technol., vol. 32, pp. 4775-4785, 2018.
  10. S. Liao, J. T. Huang and H. C. Su, „A study on the machining-parameters optimization of wire electrical discharge machining“, J. Mater. Process. Technol., vol. 71, pp. 487-493, 1997.
  11. Patel, B. Nakum, K. Abhishek and V. Rakesh Kumar, „Machining performance optimization during plasma arc cutting of AISI D2 steel: application of FIS, nonlinear regression and JAYA optimization algorithm“, J. Brazilian Soc. Mech. Sci. Eng., vol. 40, 240, 2018.
  12. Asokan, R. Ravi Kumar, R. Jeyapaul and M. Santhi, „Development of multi-objective optimization models for electrochemical machining process“, Int. J. Adv. Manuf. Technol., vol. 39, pp. 55-63, 2008.
  13. R. Sarkar, B. Doloi and B. Bhattacharyya, „Parametric analysis on electrochemical discharge machining of silicon nitride ceramics“, Int. J. Adv. Manuf. Technol., vol. 28, pp. 873-881, 2006.
  14. V. Rao, P. J. Pawar and J. P. Davim, „Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms“ Mater. Manuf. Process., vol. 25, pp. 1120-1130, 2010.
  15. Caydas and A. Hascalik, „A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method“, J. Mater. Process. Technol., vol. 202, pp. 574-582, 2008.
  16. Agrawal and D. Kamble, „Effect and optimization of photochemical machining process parameters for manufacturing array of micro-hole“, J. Brazilian Soc. Mech. Sci. Eng., vol. 41, 178, 2019.
  17. Madić, M. Radovanović and P. Janković, „Mathematical model for laser cutting time estimation“, The 4th International Conference Mechanical Engineering in XXI Century, April 19-20, 2018, Niš, Serbia, pp. 339-342.
  18. Madić, G. Petrović, D. Petković and P. Janković, „Traditional and integrated MCDM approaches for assessment and ranking of laser cutting conditions“, Spectr. Mech. Eng. Oper. Res., vol. 1, pp. 250-257, 2024.
  19. Madić, M. Radovanović, V. Blagojević and M. Kovačević, „Off-line control of CO2 laser cutting process using software prototype“, XII International SAUM Conference on Systems, Automatic Control and Measurements, November 12-14, 2014, Niš, Serbia, pp. 124-127.
  20. K. Dubey and V. Yadava, „Multi-objective optimisation of laser beam cutting process“, Opt. Laser Technol., vol. 40, pp. 562-570, 2008.
  21. Childs, K. Maekawa, T. Obikawa and Y. Yamane, Metal Machining: Theory and Applications, 1st ed., Butterworth-Heinemann, 2000.
  22. Madić, M. Trifunović, G. Mladenović, S. Nikolić and I. Kocić, „Application of logistic regression for identification of dross formation conditions in CO2 laser cutting“, New Trends in Engineering Research 2024, in press.
  23. Homaifar, C. C. Qi and S. H. Lai, „Constrained optimization via genetic algorithms“, Simul., vol. 62, pp. 242-253, 1994.
  24. S. Yang, „Review of metaheuristics and generalized evolutionary walk algorithm“, Int. J. Bio-Inspir. Comput., vol. 3, pp. 77-84, 2011.