XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 104-111)
АУТОР(И) / AUTHOR(S): Nikola Danković , Saša S. Nikolić , Dragan Antić , Miodrag Spasić , Petar Đekić
Download Full Pdf
DOI: 10.46793/SAUM24.104D
САЖЕТАК / ABSTRACT:
This paper gives some previously obtain results and contributions achieved in last fifteenth years on the topic of theory of orthogonal polynomials, i.e., orthogonal filters. This theory is based on new definitions and specific generalizations of orthogonal functions and polynomials, derived directly in complex domain. The main subject of this paper will be the possibility of some new applications of orthogonal polynomials in identification, modelling, signal processing and control of dynamical systems. Accordingly, the paper is divided into six sections. All chapters begin with a short mathematical background. In this paper we give some main results for classical, almost, improved almost, quasi-, generalized, and digital orthogonal polynomials.
КЉУЧНЕ РЕЧИ / KEYWORDS:
orthogonal polynomials, almost orthogonal polynomials, quasi-orthogonal polynomials, discrete orthogonal polynomials, generalized orthogonal polynomials, Legendre type polynomials
ПРОЈЕКАТ / ACKNOWLEDGEMENT:
This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia [grant number 451-03-66/2024-03/200102].
ЛИТЕРАТУРА / REFERENCES:
- Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972.
- T. Bell, The Development of Mathematics, McGraw-Hill, New York, 1945.
- L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, vol. 20, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, Rhode Island, USA, 1975.
- Takenaka, „On some properties of orthogonal functions„, in Proceedings of the Japan Academy, Series A, vol. 2, no. 3, pp. 106-108, 1926.
- Szegö, Orthogonal Polynomials, Providence, American Mathematical Society, Colloquium Publications, 1975.
- L. Geronimus, Polynomials Orthogonal on a Circle and Interval, Fiz. Mat. Lit., Moscow, 1958.
- V. Hof Heuberger, B. Wahlberg, Modelling and identification with rational orthogonal basis functions. London: Springer-Verlag, 2005.
- S. Heuberger and T.J. de Hoog, „Approximation and Realization Using Generalized Orthonormal Base„, in Proceedings of the 1999 European Control Conference, Karlsruhe, Germany, 1999.
- Antić, Z. Jovanović, V. Nikolić, M. Milojković, S. Nikolić, and N. Danković, „Modeling of cascade-connected systems using quasi-orthogonal functions“, Elektronika ir Elektrotechnika, vol. 18, no. 10, pp. 3–8, 2012.
- Alfaro and L. Moral, „Quasi-orthogonality on the unit circle and semi-classical forms“, Port. Mathematica, vol. 51, pp. 47–62, 1991.
- T. Milojković, D. S. Antić, S. S. Nikolić, Z. D. Jovanović, and S. Lj. Perić, „On a new class of quasi-orthogonal filters“, International Journal of Electronics, vol. 100, no. 10, pp. 1361–1372, 2013.
- Danković, S. Nikolić, M. Milojković, and Z. Jovanović, „A class of almost orthogonal filters“, Journal of Circuits, Systems, and Computers, vol. 18, no. 5, pp. 923–931, 2009.
- Antić, B. Danković, S. Nikolić, M. Milojković, and Z. Jovanović, „Approximation based on orthogonal and almost orthogonal functions“, Journal of the Franklin Institute, vol. 349, no. 1, pp. 323–336, 2012.
- Milojković, S. Nikolić, B. Danković, D. Antić, and Z. Jovanović, „Modelling of dynamical systems based on almost orthogonal polynomials“, Mathematical and Computer Modelling of Dynamical Systems, vol. 16, no. 2, pp. 133–144, 2010.
- Antić, S. Nikolić, M. Milojković, N. Danković, Z. Jovanović, and S. Perić, „Sensitivity analysis of imperfect systems using almost orthogonal filters“, Acta Polytechnica Hungarica, vol. 8, no. 6, pp. 79–94, 2011.
- S. Nikolić, D. S. Antić, S. Lj. Perić, N. B. Danković, and M. T. Milojković, „Design of generalised orthogonal filters: Application to the modelling of dynamical systems“, International Journal of Electronics, vol. 103, no. 2, pp. 269–280, 2016.
- S. Nikolić, D. S. Antić, M. T. Milojković, M. B. Milovanović, S. Lj. Perić, and D. B. Mitić, „Application of neural networks with orthogonal activation functions in control of dynamical systems“, International Journal of Electronics, vol. 103, no. 4, pp. 667–685, 2016.
- Lj. Perić, D. S. Antić, M. B. Milovanović, D. B. Mitić, M. T. Milojković, and S. S. Nikolić, „Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system“, IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 754–764, 2016.
- Danković, D. Antić, S. Nikolić, S. Perić, and M. Spasić, „Generalized cascade orthogonal filters based on symmetric bilinear transformation with application to modeling of dynamic systems“, FILOMAT, vol. 32, no. 12, pp. 4275–4284, 2018.
- Danković, D. Antić, S. Nikolić, M. Milojković, and S. Perić, “New class of digital Malmquist-type orthogonal filters based on generalized inner product; application to modeling DPCM system“, FACTA UNIVERSITATIS Series: Mechanical Engineering, vol. 17, no. 3, pp. 385–396, 2019.
- Milojković, S. Nikolić, and Staniša Perić, Applications of Orthogonal Functions in Modelling and Control of Dynamical Systems, University of Niš, Serbia, 2022.
- S. Nikolić, D. Antić, N. Danković, M. Milojković, and S. Perić, “New classes of the orthogonal filters – An overview“, in Proceedings of the 8th Small Systems Simulation Symposium-SSSS 2020, Niš, Serbia, February 12.-14., 2020., pp. 117–122.
- Riesz, „Sur le probleme des moments“, Troisième Note, Arkiv för Matematik, Astronomi och Fysik, vol. 17, no. 16, pp. 1–52, 1923.
- S. Dehesa, F. Marcellan, and A. Ronveaux, „On orthogonal polynomials with perturbed recurrence relations“, Journal of Computational and Applied Mathematics, vol. 30, pp. 203–212, 1990.
- Nikolić, D. Antić, B. Danković, M. Milojković, Z. Jovanović, and S. Perić, „Orthogonal functions applied in antenna positioning“, Advances in Electrical and Computer Engineering, vol. 10, no. 4, pp. 35–42, 2010.
- K. Taslakyan, „Some properties of Legendre quasi-polynomials with respect to a Müntz system“, Mathematics vol. 2, pp. 179–189, 1984.
- B. Borwein, T. Erdelyi, and J. Zhang, „Müntz systems and orthogonal Müntz-Legendre polynomials“, Transactions of the American Mathematical Society, vol. 342, no. 2, pp. 523–542, 1994.
- M. Djrbashian, „Orthogonal systems of rational functions on the circle with given set of poles“, Dokl. Akad. Nauk SSSR, vol. 147, pp. 1278–1281, 1962.
- M. Djrbashian, „A survey on the theory of orthogonal systems and some open problems“, in P. Nevai (ed.) Orthogonal polynomials, Springer, Netherlands, pp. 135–146, 1990.
- V. Badalyan, „Generalisation of Legendre polynomials and some of their applications“ Akad. Nauk. Armyan. SSR Izv. Ser. Fiz.-Mat. Estest. Tekhn. Nauk, vol. 8, no. 5, pp. 1–28, 1955.
- B. Danković, D. S. Antić, S. S., Nikolić, S. Lj., Perić, and M. T. Milojković, „A new class of cascade orthogonal filters based on a special inner product with application in modeling of dynamical systems“, Acta Polytechnica Hungarica, vol. 13, no. 7, pp. 63-82, 2016.
- Danković, G. V. Milovanović, S. Rančić, „Malmquist and Müntz Orthogonal Systems and Applications“, in Rassias TM (ed.), Inner product spaces and applications, Harlow: Addison-Wesley Longman, pp. 22–41, 1997.
- B. Marinković B. Danković, M. S. Stanković, and P. M. Rajković, „Orthogonality of some sequences of the rational functions and the Müntz polynomials“, Journal of Computational and Applied Mathematics, vol. 163, no. 2, pp. 419–427, 2004.
- B. Milovanović, D. S. Antić, M. T. Milojković, S. S. Nikolić, S. Lj. Perić, and M. D. Spasić, „Adaptive PID control based on orthogonal endocrine neural networks”, Neural Networks, vol. 84, pp. 80–90, 2016.
- Milovanović, A. Oarcea, S. Nikolić, A. Đorđević, and M. Spasić, „An approach to networking a new type of artificial orthogonal glands within orthogonal endocrine neural networks“, Applied Sciences, vol. 12, iss. 11, 5372, 2022.
- Milojković, D. Antić, M. Milovanović, S. S. Nikolić, S. Perić, and M. Almawlawe, „Modeling of dynamic systems using orthogonal endocrine adaptive neuro-fuzzy inference systems”, Journal of Dynamic Systems, Measurement, and Control, vol. 137, no. 9, pp. 091013-1÷091013-6, DS-15-1098, 2015.
- Milojković, M. Milovanović, S. S. Nikolić, M. Spasić, and A. Antić, „Designing optimal models of nonlinear MIMO systems based on orthogonal polynomial neural networks“, Mathematical and Computer Modelling of Dynamical Systems, vol. 27, no. 1pp. 242–262., 2021.
- S. Nikolić, D. S. Antić, N. B. Danković, A. A. Milovanović, D. B. Mitić, M. B. Milovanović, and P. S. Djekić, „Generalized quasi-orthogonal functional networks applied in parameter sensitivity analysis of complex dynamical systems“, Elektronika ir Elektrotechnika, vol. 28, no. 4, pp. 19–26, 2022.
- S. Nikolić, M. B. Milovanović, N. B. Danković, D. B. Mitić, S. Lj. Perić, A. D. Djordjević, and P. S. Djekić, „Identification of nonlinear systems using the Hammerstein-Wiener model with improved orthogonal functions“, Elektronika ir Elektrotechnika, vol. 29, no. 2, pp. 4–11, 2023.
- Spasić, D. Antić, N. Danković, S. Perić, and S. S. Nikolić, „Digital model predictive control of the three tank system based on Laguerre functions“, FACTA UNIVERSITATIS Series: Automatic Control and Robotics, vol. 17, no. 3, pp. 153–164, 2018.
- Spasić, D. Mitić, S. S. Nikolić, M. Milojković, M. Milovanović, and A. Đorđević, „Malmquist orthogonal functions based tube model predictive control with sliding mode for DC servo system“, PROCEEDINGS OF THE ROMANIAN ACADEMY, vol. 25, no. 3, pp. 241–251, 2024.