XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 80-83)
АУТОР(И) / AUTHOR(S): Jianxun Cui , Huidong Gao , Miroslav Milovanović , Staniša Perić , Marko Milojković
Download Full Pdf
DOI: 10.46793/SAUM24.080C
САЖЕТАК / ABSTRACT:
With the acceleration of urbanization, the technology of autonomous vehicle trajectory predictionis crucial for improving traffic conditions. This paper provides a comprehensive review of autonomous vehicle trajectory prediction methods, briefly summarizesthe traditional model-based methods and data-driven methods. And emphatically introduces trajectory prediction models based on generation, such as Generative Adversarial Network (GAN), Variational Auto-Encoder (VAE) and diffusion models. It analyzes their principles, characteristics, and application cases. In the end this paper prospects future research directions, including enhancing accuracy and stability, fusing multi-source data, reducing computational costs, and improving interpretability.
КЉУЧНЕ РЕЧИ / KEYWORDS:
autonomous vehicles, vehicle trajectory prediction, deep learning, generative models
ЛИТЕРАТУРА / REFERENCES:
- Ren, Bingtao, Weiwen Deng, and Bai Xuesong. „A Review of Simulation Scene Construction Technologies for Intelligent Driving Testing.“Journal of Image and Graphics, 2021.
- Li, Wei, Jing Wang, and Duan Jianmin. „Lane-changing trajectory planning for intelligent vehicles based on polynomials.“Computer Engineering and Applications, 2012.
- Salzmann, Tim, et al. „Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data.“ Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer International Publishing, 2020.
- Alahi, Alexandre, et al. „Social lstm: Human trajectory prediction in crowded spaces.“ Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Chandra, Rohan, et al. „Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions.“ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
- Huang, Renbo, et al. „A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving.“ Sustainability 15.20 (2023): 14716.
- Gupta, Agrim, et al. „Social gan: Socially acceptable trajectories with generative adversarial networks.“ Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- Sun Yasheng, et al. „Pedestrian trajectory prediction generation model based on attention mechanism.“Journal of Computer Applications, 2019.
- de Brito, Bruno Ferreira, et al. „Social-vrnn: One-shot multi-modal trajectory prediction for interacting pedestrians.“ Conference on Robot Learning. PMLR, 2021.
- Huang, Lei, et al. „STI-GAN: Multimodal pedestrian trajectory prediction using spatiotemporal interactions and a generative adversarial network.“ IEEE Access 9 (2021): 50846-50856.
- Gupta, Agrim, et al. „Social gan: Socially acceptable trajectories with generative adversarial networks.“ Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- Chen, Xinyu, et al. „TrajVAE: A Variational AutoEncoder model for trajectory generation.“ Neurocomputing 428 (2021): 332-339.
- Ding, Wenhao, Wenshuo Wang, and Ding Zhao. „A multi-vehicle trajectories generator to simulate vehicle-to-vehicle encountering scenarios.“ 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
- Yin, Zhao-Heng, et al. „Diverse critical interaction generation for planning and planner evaluation.“ 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.
- Feng, Xidong, et al. „Vehicle trajectory prediction using intention-based conditional variational autoencoder.“ 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019.
- Ding, Wenhao, Mengdi Xu, and Ding Zhao. „Cmts: A conditional multiple trajectory synthesizer for generating safety-critical driving scenarios.“ 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.
- Janner, Michael, et al. „Planning with diffusion for flexible behavior synthesis.“ arXiv preprint arXiv:2205.09991 (2022).
- Zhong, Ziyuan, et al. „Guided conditional diffusion for controllable traffic simulation.“ 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.
- Zhong, Ziyuan, et al. „Language-guided traffic simulation via scene-level diffusion.“ Conference on Robot Learning. PMLR, 2023.