XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 67-70)
АУТОР(И) / AUTHOR(S): Valentina Nejković , Stevica Cvetković , Luka Stojadinović, Đorđe Đorđević
Download Full Pdf
DOI: 10.46793/SAUM24.067N
САЖЕТАК / ABSTRACT:
This paper presents the development of a web-based application designed for real-time monitoring and analysis of energy consumption in district heating systems (DHS). The primary objective is to create a platform that enables users to intuitively visualize energy data through dynamic graphs and tables, thereby facilitating more efficient energy resource management. The application leverages Next.js for the frontend development, ensuring a responsive and seamless user interface, while Supabase serves as the backend solution, providing real-time data synchronization and database management capabilities. The results demonstrate that the proposed solution enhances the analysis of energy data, equipping users with actionable insights to optimize operational performance, reduce costs, and improve overall energy efficiency in DHS. The platform’s ability to provide real-time feedback and data-driven decision-making tools underscores its potential as a valuable resource in energy management systems.
КЉУЧНЕ РЕЧИ / KEYWORDS:
energy data visualization, Supabase, Next.js, district heating systems, real-time monitoring
ПРОЈЕКАТ/ ACKNOWLEDGEMENT:
This paper is part of the project“Explainable AI-assisted operations in district heating systems -XAI4HEAT” and was supported by the Science Fund of the Republic of Serbia, Grant No.23-SSF-PRISMA-206.
ЛИТЕРАТУРА / REFERENCE
[1] World Energy Outlook 2024. International Energy Agency (IEA).
[2] Asadi, S., & Lee, K. (2020). „Smart Grid Technology: Enhancing Energy Efficiency and Sustainability.“ Journal of Renewable and Sustainable Energy.
[3] Fang, H., Xia, J., Zhu, K., Su, Y., & Jiang, Y. (2013). „Industrial waste heat utilization for low-temperature district heating.“ Energy Policy, 62, 236-246.
[4] Werner, S. (2017). „District Heating and Cooling in Sweden.“ Energy, 126, 419-429.
[5] Lund, H., & Østergaard, P. A. (2010). „Intelligent Energy Systems and District Heating.“ Applied Energy, 87(2), 391-404.
[6] Karmellos, M., Kopsachilis, E., &Mavrotas, G. (2015). „Real-Time Data Analysis for Energy Efficiency in Smart Grids.“ Energy Systems, 6(3), 489-504.
[7] Kamel, S., & Dahl, C. (2014). „The Role of Energy Efficiency in Reducing Global Greenhouse Gas Emissions.“ Renewable and Sustainable Energy Reviews, 37, 646-662.
[8] Konstas, K., Chountalas, P. T., &Didaskalou, E. A. (2023). „A Pragmatic Framework for Data-Driven Decision-Making Process in the Energy Sector: Insights from a Wind Farm Case Study.“ Energies, 16(17), 6272. doi:10.3390/en16176272.
[9] Vercel. (n.d.). „Next.js: The React Framework for Production.“ Available at https://nextjs.org/.
[10] tRPC Documentation. (n.d.). „tRPC: End-to-End Type-Safe APIs.“ Available at https://trpc.io/.
[11] Prisma Documentation. (n.d.). „What is Prisma ORM?“ Available at https://www.prisma.io/docs/orm/overview/introduction/what-is-prisma.
[12] Dalla Rosa, A., & Li, H. (2011). „Optimal Design of Pipes for Low-Energy District Heating.“ Energy, 36(5), 2407-2418. doi:10.1016/j.energy.2011.01.033
[13] Werner, S. (2017). „International Review of District Heating and Cooling.“ Energy, 137, 617-631
[14] Rehau UK. (n.d.). „District Heating Solutions.“ Available at https://www.rehau.com/uk-en/service/reference/438954.