УПРАВЉАЊЕ И ТЕЛЕКОМУНИКАЦИЈЕ У ЕЕС / 21. симпозијум CIGRE Србија 2024 (стр. 112-125)
АУТОР(И) / AUTHOR(S): Владимир Бечејац
Download Full Pdf
DOI: 10.46793/CIGRE21S.112B
САЖЕТАК / ABSTRACT:
U ovom radu predstavljen je razvoj i implementacija MATLAB aplikacije za optimalno postavljanje PMU (Phasor Measurement Units) uređaja u elektroenergetski sistem. Cilj aplikacije je maksimizacija pouzdanosti i efikasnosti nadzora sistema, osiguravajući potpunu topološku opservabilnost mreže. Kroz korišćenje linearnih i naprednih optimizacionih metoda (Particle Swarm Optimization), aplikacija identifikuje najbolje lokacije za PMU uređaje uzimajući u obzir klasične analize, N-1 analize i postojeće PMU uređaje. Opisane aktivnosti su sprovedene kroz evropski Horizon 2020 projekat Reliability, Resilience and Defense Technology for the Grid-R2D2.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Optimitation, PSO, N-1, linear programming
ЛИТЕРАТУРА / REFERENCES:
- Khaledian, Ehdieh, et al. „Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop.“ IEEE Transactions on Smart Grid3 (2020): 2378
- Wu, Tong, Ying-Jun Angela Zhang, and Xiaoying Tang. „Isolation forest based method for low-quality synchrophasor measurements and early events detection.“ 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE, 2018.
- Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. „Isolation forest.“ 2008 eighth ieee international conference on data mining. IEEE, 2008.
- Ding, Zhiguo, and Minrui Fei. „An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window.“ IFAC Proceedings Volumes20 (2013): 12-17.
- Ehsani, Narges, Farrokh Aminifar, and Hamed Mohsenian‐Rad. „Convolutional autoencoder anomaly detection and classification based on distribution PMU measurements.“ IET Generation, Transmission & Distribution14 (2022): 2816-2828.
- Niazazari, Iman, and Hanif Livani. „A PMU-data-driven disruptive event classification in distribution systems.“ Electric Power Systems Research157 (2018): 251-260.
- Lin, You, Jianhui Wang, and Mingjian Cui. „Reconstruction of power system measurements based on enhanced denoising autoencoder.“ 2019 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2019.
- Adam, Valenta. Anomaly detection using the Extended Isolation Forest algorithm. MS thesis. Czech Technical University in Prague. Computing and information center., 2020.
- Mahapatra, Kaveri. Data Anomaly Detection and Correction in PMU Measurements for Wide-Area Monitoring Applications. Diss. The Pennsylvania State University, 2020.
- Phadke, Arun G. „Synchronized phasor measurements-a historical overview.“ IEEE/PES transmission and distribution conference and exhibition. Vol. 1. IEEE, 2002.