OPTIMIZACIJA POSTAVLJANJA PMU UREĐAJA ZA POBOLJŠANU OPSERVABILNOST MREŽE KORIŠĆENJEM MATLAB-A

УПРАВЉАЊЕ И ТЕЛЕКОМУНИКАЦИЈЕ У ЕЕС / 21. симпозијум CIGRE Србија 2024  (стр. 112-125)

АУТОР(И) / AUTHOR(S): Владимир Бечејац

Download Full Pdf  

DOI:  10.46793/CIGRE21S.112B

САЖЕТАК / ABSTRACT:

U ovom radu predstavljen je razvoj i implementacija MATLAB aplikacije za optimalno postavljanje PMU (Phasor Measurement Units) uređaja u elektroenergetski sistem. Cilj aplikacije je maksimizacija pouzdanosti i efikasnosti nadzora sistema, osiguravajući potpunu topološku opservabilnost mreže. Kroz korišćenje linearnih i naprednih optimizacionih metoda (Particle Swarm Optimization), aplikacija identifikuje najbolje lokacije za PMU uređaje uzimajući u obzir klasične analize, N-1 analize i postojeće PMU uređaje. Opisane aktivnosti su sprovedene kroz evropski Horizon 2020 projekat Reliability, Resilience and Defense Technology for the Grid-R2D2.

КЉУЧНЕ РЕЧИ / KEYWORDS:

Optimitation, PSO, N-1, linear programming

ЛИТЕРАТУРА / REFERENCES:

  1. Khaledian, Ehdieh, et al. „Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop.“ IEEE Transactions on Smart Grid3 (2020): 2378
  2. Wu, Tong, Ying-Jun Angela Zhang, and Xiaoying Tang. „Isolation forest based method for low-quality synchrophasor measurements and early events detection.“ 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE, 2018.
  3. Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. „Isolation forest.“ 2008 eighth ieee international conference on data mining. IEEE, 2008.
  4. Ding, Zhiguo, and Minrui Fei. „An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window.“ IFAC Proceedings Volumes20 (2013): 12-17.
  5. Ehsani, Narges, Farrokh Aminifar, and Hamed Mohsenian‐Rad. „Convolutional autoencoder anomaly detection and classification based on distribution PMU measurements.“ IET Generation, Transmission & Distribution14 (2022): 2816-2828.
  6. Niazazari, Iman, and Hanif Livani. „A PMU-data-driven disruptive event classification in distribution systems.“ Electric Power Systems Research157 (2018): 251-260.
  7. Lin, You, Jianhui Wang, and Mingjian Cui. „Reconstruction of power system measurements based on enhanced denoising autoencoder.“ 2019 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2019.
  8. Adam, Valenta. Anomaly detection using the Extended Isolation Forest algorithm. MS thesis. Czech Technical University in Prague. Computing and information center., 2020.
  9. Mahapatra, Kaveri. Data Anomaly Detection and Correction in PMU Measurements for Wide-Area Monitoring Applications. Diss. The Pennsylvania State University, 2020.
  10. Phadke, Arun G. „Synchronized phasor measurements-a historical overview.“ IEEE/PES transmission and distribution conference and exhibition. Vol. 1. IEEE, 2002.