58. KONGRES ANTROPOLOŠKOG DRUŠTVA SRBIJE (ADS 2025), [pp. 10-19]
AUTHOR(S) / AUTOR(I): Maja Šibarević
, Jelena Malinović Pančić
, Tamara Dojčinović
, Bojana Carić
, Rajko Roljić
, Elvira Hadžiahmetović Jurida
Download Full Pdf
DOI: 10.46793/ADS25.10S
ABSTRACT / SAŽETAK:
Anthropometric indices play a key role in medicine, particularly in assessing body composition, obesity, and the risk of metabolic disorders. The aim of this study is to examine the relationship between basic and derived anthropometric indices and body fat percentage in patients with type 2 diabetes. The sample comprised 160 people with an average age of 65.3 years. Body weight, height, waist circumference (WC), and hip circumference (HC) were measured. Body fat percentage was determined using a bioelectrical impedance analysis (BIA) device, Omron BF-511. Derived anthropometric indices were calculated: BMI (body mass index), WHtR (waist-to-height ratio), WHR (waist-to-hip ratio), BRI (body roundness index), BAI (body adiposity index), CI (conicity index), and AVI (abdominal volume index). Pearson’s correlation coefficient was used for statistical analysis. The strongest positive correlation with body fat percentage was shown by BAI (r=0.553; p<0.001), BMI (r=0.551; p<0.001), BRI (r=0.529; p<0.001), and WHtR (r=0.510; p<0.001), compared to WC (r=0.362; p<0.001) and HC (r=0.461; p<0.001), which had weaker correlations than the derived indices, indicating their greater reliability in assessing body composition. On the other hand, WHR (r=0.052; p=0.516) and CI (r=0.159; p=0.045) showed the weakest associations, suggesting they are not reliable indicators of body fat. Since certain anthropometric indices exhibited a moderate correlation with the BIA-derived body fat assessment, the findings indicate that additional methods should be utilized to improve the accuracy of body fat estimation.
KEYWORDS / KLJUČNE REČI:
anthropometric indices, bioelectrical impedance analysis, type 2 diabetes
REFERENCES / LITERATURA:
- Amiri, P., Javid, A. Z., Moradi, L., Haghighat, N., Moradi, R., Behbahani, H. B., Zarrin, M., & Bazyar, H. (2021). Associations between new and old anthropometric indices with type 2 diabetes mellitus and risk of metabolic complications: A cross-sectional analytical study. Jornal Vascular Brasileiro, 20, e20236. https://doi.org/10.1590/1677-5449.200236
- Bergman, R. N., Stefanovski, D., Buchanan, T. A., Sumner, A. E., Reynolds, J. C., Sebring, N. G., Xiang, A. H., & Watanabe, R. M. (2011). A better index of body adiposity. Obesity, 19(5), 1083–1089. https://doi.org/10.1038/oby.2011.38
- Boonpor, J., Parra-Soto, S., Talebi, A., Zhou, Z., Carrasco-Marin, F., Petermann-Rocha, F., Welsh, P., Pell, J. P., Sattar, N., Gill, J. M. R., Gray, S. R., Celis-Morales, C., & Ho, F. K. (2023). Associations and predictive performance of 11 anthropometric measures with incident type 2 diabetes: A prospective cohort study from the UK Biobank. Obesity, 31(12), e23849. https://doi.org/10.1002/oby.23849
- Ceolin, J., Engroff, P., Mattiello, R., & Schwanke, C. H. A. (2019). Performance of anthropometric indicators in the prediction of metabolic syndrome in the elderly. Metabolic Syndrome and Related Disorders, 17(4). https://doi.org/10.1089/met.2018.0113
- Chandrasekaran, P., & Weiskirchen, R. (2024). The role of obesity in type 2 diabetes mellitus—An overview. International Journal of Molecular Sciences, 25(3), 1882. https://doi.org/10.3390/ijms25031882
- Chuan, F., Chen, S., Ye, X., Kang, S., Mei, M., Tian, W., Liao, K., Li, Y., Gong, L., Li, R., & Zhou, B. (2022). Sarcopenic obesity predicts negative health outcomes among older patients with type 2 diabetes: The Ageing and Body Composition of Diabetes (ABCD) cohort study. Clinical Nutrition, 41(12), 2740–2748. https://doi.org/10.1016/j.clnu.2022.10.023
- De Lorenzo, A., Soldati, L., Sarlo, F., Calvani, M., Di Lorenzo, N., & Di Renzo, L. (2016). New obesity classification criteria as a tool for bariatric surgery indication. World Journal of Gastroenterology, 22(2), 681–703. https://doi.org/10.3748/wjg.v22.i2.681
- Ehrampoush, E., Arasteh, P., Homayounfar, R., Cheraghpour, M., Alipour, M., Naghizadeh, M. M., Hadibarhaghtalab, M., Davoodi, S. H., Askari, A., & Razaz, J. M. (2017). New anthropometric indices or old ones: Which is the better predictor of body fat? Diabetes & Metabolic Syndrome, 11(4), 257–263. https://doi.org/10.1016/j.dsx.2016.08.027
- Gavin, K. M., & Bessesen, D. H. (2020). Sex differences in adipose tissue function. Endocrinology and Metabolism Clinics of North America, 49(2), 215–228. https://doi.org/10.1016/j.ecl.2020.02.008
- Guerrero-Romero, F., & Rodríguez-Morán, M. (2003). Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Archives of Medical Research, 34(5), 428–432. https://doi.org/10.1016/S0188-4409(03)00073-0
- International Diabetes Federation. (n.d.). Diabetes facts & figures. https://idf.org/about-diabetes/diabetes-facts-figures/
- Jayedi, A., Soltani, S., Zeraat-talab Motlagh, S., Emadi, A., Shahinfar, H., Moosavi, H., & Shab-Bidar, S. (2022). Anthropometric and adiposity indicators and risk of type 2 diabetes: Systematic review and dose-response meta-analysis of cohort studies. BMJ, 376, e067516. https://doi.org/10.1136/bmj-2021-067516
- Khader, Y., Batieha, A., Jaddou, H., Rawashdeh, S. I., El-Khateeb, M., Hyassat, D., Khader, A., & Ajlouni, K. (2019). Hypertension in Jordan: Prevalence, awareness, control, and its associated factors. International Journal of Hypertension, 2019, 3210617. https://doi.org/10.1155/2019/3210617
- Khan, S. H., Shahid, R., Fazal, N., & Ijaz, A. (2019). Comparison of various abdominal obesity measures for predicting metabolic syndrome, diabetes, nephropathy, and dyslipidemia. Journal of the College of Physicians and Surgeons–Pakistan: JCPSP, 29(12), 1159–1164. https://doi.org/10.29271/jcpsp.2019.12.1159
- Liu, B., Liu, B., Wu, G., & Yin, F. (2019). Relationship between body-roundness index and metabolic syndrome in type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 931–935. https://doi.org/10.2147/DMSO.S209964
- Liu, J., Jin, X., & Feng, Z. (2024). Using anthropometric parameters to predict insulin resistance among patients without diabetes mellitus. Scientific Reports, 14, 21407. https://doi.org/10.1038/s41598-024-57020-2
- Liu, Y., Liu, X., Zhang, S., Zhu, Q., Fu, X., Chen, H., Guan, H., Xia, Y., He, Q., & Kuang, J. (2021). Association of Anthropometric Indices With the Development of Diabetes Among Hypertensive Patients in China: A Cohort Study. Frontiers in endocrinology, 12, 736077. https://doi.org/10.3389/fendo.2021.736077
- Motamed, N., Rabiee, B., Hemasi, G. R., Ajdarkosh, H., Khonsari, M. R., Maadi, M., Keyvani, H., & Zamani, F. (2016). Body roundness index and waist-to-height ratio are strongly associated with non-alcoholic fatty liver disease: A population-based study. Hepatitis Monthly, 16(9), e39575. https://doi.org/10.5812/hepatmon.39575
- Ness-Abramof, R., & Apovian, C. M. (2008). Circumference measurement in clinical practice. Nutrition in Clinical Practice, 23(4), 397–404. https://doi.org/10.1177/0884533608321700
- Nuttall, F. Q. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092
- Sadeghi, E., Khodadadiyan, A., & Hosseini, S. A. (2024). Novel anthropometric indices for predicting type 2 diabetes mellitus. BMC Public Health, 24, 1033. https://doi.org/10.1186/s12889-024-18541-7
- Salmón-Gómez, L., Catalán, V., Frühbeck, G., & Gómez-Ambrosi, J. (2023). Relevance of body composition in phenotyping the obesities. Reviews in Endocrine and Metabolic Disorders, 24(5), 809–823. https://doi.org/10.1007/s11154-023-09796-3
- Sekgala, M. D., Sewpaul, R., Kengne, A. P., Mchiza, Z., & Peer, N. (2024). Clinical utility of novel anthropometric indices in identifying type 2 diabetes mellitus among South African adult females. BMC Public Health, 24(1), 2676. https://doi.org/10.1186/s12889-024-20168-7
- Skogberg, N., Laatikainen, T., Lundqvist, A., Lilja, E., Härkänen, T., & Koponen, P. (2018). Which anthropometric measures best indicate type 2 diabetes among Russian, Somali, and Kurdish origin migrants in Finland? A cross-sectional study. BMJ Open, 8, e019166. https://doi.org/10.1136/bmjopen-2017-019166
- Stevens, J., Katz, E. G., & Huxley, R. R. (2010). Associations between gender, age, and waist circumference. European Journal of Clinical Nutrition, 64(1), 6–15. https://doi.org/10.1038/ejcn.2009.101
- Valdez, R. (1991). A simple model-based index of abdominal adiposity. Journal of Clinical Epidemiology, 44(9), 955–956. https://doi.org/10.1016/0895-4356(91)90059-I
- Vera-Ponce, V. J., Zuzunaga-Montoya, F. E., Vásquez-Romero, L. E. M., Loayza-Castro, J. A., Iturregui Paucar, C. R., Gutiérrez De Carrillo, C. I., Valladares-Garrido, M. J., & Placencia Medina, M. (2024). Anthropometric measures of obesity as risk indicators for prediabetes: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 18, Article 100230. https://doi.org/10.1016/j.deman.2024.100230
- World Health Organization. (1999). Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Geneva, Switzerland: Department of Noncommunicable Disease Surveillance. https://iris.who.int/handle/10665/66040
- Xu, J., Zhang, L., Wu, Q., Zhang, D., Zhou, X., Fang, W., & Zhang, Y. (2021). Body roundness index is a superior indicator to associate with the cardio‐metabolic risk: Evidence from a cross‐sectional study with 17,000 Eastern-China adults. BMC Cardiovascular Disorders, 21, Article 97. https://doi.org/10.1186/s12872-021-01905-x
- Xie, F., Pei, Y., Zhou, Q., Cao, D., & Wang, Y. (2021). Comparison of obesity-related indices for identifying nonalcoholic fatty liver disease: A population-based cross-sectional study in China. Lipids in Health and Disease, 20, Article 132. https://doi.org/10.1186/s12944-021-01558-8