IMPROVING GERMINATION AND PROTECTION OF WHEAT SEEDS WITH NEW BACTERICAL ISOLATES FROM ALKALINE SOIL

3rd International Symposium On Biotechnology (2025),  [pp. 321-331]

AUTHOR(S) / AUTOR(I): Marina Jovković, Magdalena Knežević, Marina Dervišević, Galina Jevđenović, Jelena Maksimović, Jelena Pavlović, Mira Milinković, Aneta Buntić

Download Full Pdf   

DOI: 10.46793/SBT30.39MJ

ABSTRACT / SAŽETAK:

The objective of this research is to investigate the application of new Bacillus spp. isolates from alkaline soil as potential biocontrol agents for the management of wheat pest-wireworms (A. lineatus larvae), diseases caused by the phytopathogenic fungi Fusarium spp., and their plant growth-promoting potential. Among five new Bacillus spp. isolates, BHC 1.3 and BHC 1.5 showed ability to suppress only mycelial growth of F. proliferatum. Insecticidal activity resulting in a wireworm mortality rate of 17.24% after ten days of experimentation was observed for BHC 1.5. The final percentage of seed germination was in the range of 95% – 100% with the additional highest production of indole-3-acetic acid (IAA) by BHC 1.5. The results of this study indicate that the new Bacillus spp. isolate may have the potential for formulating microbial inoculants effective in promoting wheat plant growth and biocontrol of soil-borne diseases and pests.

KEYWORDS / KLJUČNE REČI:

biocontrol, Fusarium spp., wireworms, plant growth promoting traits, wheat seedlings

ACKNOWLEDGEMENT / PROJEKAT:

This research was funded by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia, contract Nos. 451-03- 136/2025-03/200011, 451-03-136/2025-03/200214 and 451-03-66/2024-03/200135 and by the Science Fund of the Republic of Serbia, GRANT No. 10815, The necessity of healthy crops: Development of a multifunctional bacterial inoculant for the biological protection of cereals – BioHealCrop.

REFERENCES / LITERATURA:

  • Barsics F., Haubruge E., Verheggen F. J. (2013). Wireworms’ Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae). Insects, 4(1), 117–152. doi:10.3390/insects4010117
  • Furlan L., Benvegnù I., Bilò M. F., Lehmhus J., Ruzzier E., (2021). Species Identification of Wireworms (Agriotes spp.; Coleoptera: Elateridae) of Agricultural Importance in Europe: A New “Horizontal Identification Table”. Insects 12(6), 534. doi: 10.3390/insects12060534.
  • Kozina A., Čačija M., Igrc Barčić J., Bažok R. (2013). Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia. International Journal of Biometeorology, 57(4), 509–519. doi:10.1007/s00484-012-0577-z
  • European commission. (2020). Farm to Fork Strategy: For a fair, healthy and environmentally – friendly food system. https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf.
  • Thakur N., Kaur S., Tomar P., Thakur S., Yadav A.N. (2020). Chapter 15 – Microbial biopesticides: current status and advancement for sustainable agriculture and environment. Published in New and future developments in microbial biotechnology and bioengineering, Rastegari A. A., Yadav A. N., Yadav N. (eds), 243-282, Elsevier. doi.org/10.1016/B978-0-12-820526-6.00016-6.
  • Zhao Y., Selvaraj J. N., Xing F., Zhou L., Wang Y., Song H., Tan X., Sun L., Sangare L., Folly Y. M. E., Liu, Y. (2014). Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE, 9(3), e92486. doi.10.1371/journal.pone.0092486
  • Villa-Rodriguez E., Moreno-Ulloa A., Castro-Longoria E., Parra-Cota F. I., de los Santos-Villalobos S. (2021). Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 251, 126826. doi.10.1016/j.micres.2021.126826
  • Shiferaw B., Smale M., Braun H., Duveiller E., Reynolds M., Muricho G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291–317. doi:10.1007/s12571-013-0263-y
  • Igrejas G., Branlard G. (2020). The importance of wheat. Published in: Wheat Quality for Improving Processing and Human Health, Igrejas G., Ikeda T.M., Guzmán C. (eds), 1–7, Springer International Publishing, Cham. doi.org/10.1007/978-3-030-34163-3_1
  • Tilman D., Balzer C., Hill J., Befort B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. doi:10.1073/pnas.1116437108
  • Xu Z., Zhou G., Shimizu H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5(6), 649–654. doi:10.4161/psb.5.6.11398 Dhakal A., Adhikari C., Manandhar D., Bhattarai S., Shrestha S. (2021).
  • Effect of Abiotic Stress in Wheat: A Review. Reviews in Food and Agriculture (RFNA). 2(2), 69-72. doi:10.26480/rfna.02.2021.69.72
  • Paudel H., Bhandari R., Dhakal A., Nyaupane S., Panthi B., Poudel M.R. (2023).      RESPONSE OF WHEAT TO DIFFERENT ABIOTIC STRESS CONDITIONS: A REVIEW. Science Heritage Journal (GWS). 7(1), 27-31. doi:10.26480/gws.01.2023.27.31.
  • Voučko B., Bartkiene E., Rakszegi M., Rocha JMF. (2025) Editorial: Wheat: from nutrition to cultivation and technology. Frontiers in Nutrition. 12, 1563397. doi: 10.3389/fnut.2025.1563397
  • Robles–Zazueta CA., Piñera–Chavez FJ, Crespo–Herrera LA, Rivera– Amado C, Aradottir GI. (2023). Climate change impacts on crop breeding: targeting interacting biotic and abiotic stresses for wheat improvement. Plant Genome. 17(1), e20365. doi:10.1002/tpg2.20365.
  • Matić M., Baličević R., Novoselović D., Ćosić J., Vrandečić K. (2020). Integrirana zaštita pšenice u suzbijanju fitopatogene gljive Fusarium graminearum. Poljoprivreda, 26(1), 3–9. doi:10.18047/poljo.26.1.1
  • Latz M.A.C., Jensen B., Collinge D.B., Jørgensen H.J.L. (2018). Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant    Ecology & Diversity, 11(5–6), 555–567. doi.org/10.1080/17550874.2018.1534146
  • Tadesse W., Amri A., Ogbonnaya F. C., Sanchez–Garcia M., Sohail Q., Baum (2016). Chapter Wheat. Published in Genetic and Genomic Resources for Grain Cereals Improvement, Singh M., Upadhyaya H.D. (eds), 81–124. Oxford: Academic Press. doi:10.1016/b978-0-12-802000-5.00002-2
  • Munkvold G.P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109(7), 705-713. doi:10.1023/A:1026078324268
  • Li Y., Zhang X., He K., Song X., Yu J., Guo Z., Xu M. (2023). Isolation and Identification of Bacillus subtilis LY-1 and Its Antifungal and Growth-Promoting Effects. Plants, 12(24), 4158. doi.org/10.3390/plants12244158
  • SRPS ISO 11464:2004. Soil quality—Pretreatment of samples for physico- chemical analyses. SRPS, Institute for Standardisation of Republic of Serbia, Belgrade, Serbia, 2004.
  • Egnér H., Riehm H., Domingo W.R. (1960). Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl. Lantbrukshögskolans Ann. 26, 199– 215.
  • JDPZ – Jugoslovensko društvo za proučavanje zemljišta. (1966). Priručnik za ispitivanje zemljišta, knjiga I. Hemijske metode ispitivanja zemljišta. Beograd, 44–45.
  • SRPS ISO 10390:2007. Soil quality—Determination of pH. SRPS, Institute for Standardisation of Republic of Serbia, Belgrade, Serbia, 2007.
  • SRPS ISO 10693:2005. Soil quality—Determination of carbonate content, volumetric method. SRPS, Institute for Standardisation of Republic of Serbia, Belgrade, Serbia, 2005.
  • Knežević, M., Stajković-Srbinović, O., Assel, M., Milić, M., Mihajlovski, K., Delić, D. Buntić, A., 2021. The ability of a new strain of Bacillus pseudomycoides to improve the germination of alfalfa seeds in the presence of fungal infection or chromium. Rhizosphere 18, p.100353. doi.org/10.1016/j.rhisph.2021.100353.
  • Mihajlovski K.R., Radovanović N.R., Miljković M.G., Šiler–Marinković S., Rajilić–Stojanović M.D., Dimitrijević–Branković S.I. (2015). β-Amylase production from packaging–industry wastewater using a novel strain Paenibacillus chitinolyticus CKS 1. RSC Advances, 5(110), 90895–90903. doi:10.1039/c5ra11964b
  • Figueira C., Ferreira M.J., Silva H., Cunha A. (2019). Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP101620. Annals of Applied Biology 174(3), 319-328. doi.org/10.1111/aab.12495. Abbott W.S. (1925). A method of computing the effectiveness of an insecticide.        Journal of Economic Entomology, 18(2), 265–267. doi.org/10.1093/jee/18.2.265a
  • Milagres A.M., Machuca A., Napoleão D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1–6. doi:10.1016/s0167-7012(99)00028-7
  • Rokhbakhsh-Zamin F., Sachdev D., Kazemi–Pour N., Engineer A., Pardesi K.R., Zinjarde S., Dhakephalkar P.K., Chopade B.A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology. 21(6), 556–566  doi.org/10.4014/jmb.1012.12006.
  • Gordon S.A., Weber R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology. 26(1), 192–195. doi:10.1104/pp.26.1.192
  • Ali A., Phull A.R., Zi, M., Shah A.M.A., Malik R.N. (2015). Phytotoxicity of River Chenab sediments: In vitro morphological and biochemical response of Brassica napus L. Environmental Nanotechnology, Monitoring & Management, 4, 74–84. doi.10.1016/j.enmm.2015.09.003
  • Baard V., Bakare O. O., Daniel A. I., Nkomo M., Gokul A., Keyster M., Klein (2023). Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens, 12(2), 254. doi: 10.3390/pathogens12020254.
  • Bjelić D., Ignjatov M., Marinković J., Milošević D., Nikolić Z., Gvozdanović– Varga J., Karaman M. (2018). Bacillus isolates as potential biocontrol agents of Fusarium clove rot of garlic. Zemdirbyste-Agriculture, 105(4), 369-376. doi.10.13080/z-a.2018.105.047
  • Kumar P., Kamle M., Borah R., Mahato D.K., Sharma B. (2021). Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egyptian Journal of Biological Pest Control, 31(1):95. doi:10.1186/s41938-021-00440-3
  • Miljaković D., Marinković J., Tamindžić G., Milošević D., Ignjatov M., Karačić V., Jakšić S. (2024). Bio-Priming with Bacillus Isolates Suppress the Seed Infection and Improve the Germination of Garden Pea in the Presence of Fusarium Strains. Journal of Fungi, 10(5):358. doi: 10.3390/jof10050358.
  • Park Y., Hua G., Taylor M.D., Adang M.J. (2014). A coleopteran cadherin fragment synergizes toxicity of Bacillus thuringiensis toxins Cry3Aa, Cry3Bb, and Cry8Ca against lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of Invertebrate Pathology, 123, 1–5. doi.org/10.1016/j.jip.2014.08.008
  • Song P., Zhao B., Sun X., Li L., Wang Z., Ma C., Zhang J. (2023). Effects of Bacillus subtilis HS5B5 on Maize Seed Germination and Seedling Growth under NaCl Stress Conditions. Agronomy, 13(7), 1874. doi.org/10.3390/agronomy13071874
  • Manojlović S., Rajković T., Glintić M., Sestić S. (1969). Priručnik za sistematsku kontrolu plodnosti zemljišta i upotrebu đubriva. Centar za unapređenje poljoprivredne proizvodnje SR Srbije: Poslovno udruženje proizvođača veštačkih đubriva „Agrohemija“, Beograd, 67-71.