STRATEGIES FOR OPTIMIZED FERTILIZER USE: IMPLICATIONS FOR ENERGY EFFICIENCY AND CROP PERFORMANCE

2nd International Symposium On Biotechnology (2024),  [81-88]

AUTHOR(S) / АУТОР(И): Marija Gavrilovic, Biljana Veljkovic, Ranko Koprivica, Nenad Pavlovic

E-MAIL: marija.gavrilovic@kg.ac.rs

Download Full Pdf   

DOI: 10.46793/SBT29.10MG

ABSTRACT / САЖЕТАК:

The analysis underlines the crucial role of optimized fertilizer use in modern agriculture, which improves crop performance and energy efficiency. Efficient fertilizer management, including precision agriculture, is essential for sustainability. Data shows a 20% increase in wheat yields and up to 25% increase in soybean yields compared to conventional methods. Energy savings of up to 30% were also found in maize cultivation, 27% in sunflowers and 23% in sugar beet. Further research is essential to understand the long-term impact and scalability of optimized fertilization practices, with interdisciplinary collaboration driving innovation for a more sustainable agricultural future.

KEYWORDS / КЉУЧНЕ РЕЧИ:

fertilizer optimization, crop performance, energy efficiency, sustainable agriculture, precision agriculture

REFERENCES / ЛИТЕРАТУРА:

  • Devi O.R., Ojha N., Laishram B., Dutta S., Kalita S. (2023). Roles of nano-fertilizers in sustainable agriculture and biosafety. Environment and Ecology. 41(1B): 457-463.
  • Dyer J.A., Desjardins R.L. (2003). Simulated farm fieldwork energy consumption and related greenhouse gas emissions in Canada. Biosyst.Eng. 85(4): 503–13.
  • Gascoigne W.R., Hoag D., Koontz L., Tangen B.A., Shaffer T.L. (2017). The utility of precision agriculture technologies: A benefit-cost framework. Precision Agriculture. 18(4): 602-624.
  • Gavrilovic M., Muhovic A., Pavlovic N. (2023). Analysis of the Application of Modern Technologies in Agriculture in Three Balkan Countries and the Impact on Biodiversity. Romanian agricultural research, no. 41, 2024
  • Kim D.Y., Kadam A., Shinde S. (2018). Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Scence of Food and Agric. 98: 849–864. First Online: December, 2023. DII 2067-5720 RAR 2024-32.
  • Lal R. (2004). Carbon emission from farm operations. Environ. Int. 30(7): 981–90.
  • Miao Q., Zhang J., Chen Y., Xue Y., Cui Z. (2021). Integrated nitrogen amount and sources maximize maize nitrogen efficiency in the saline soils. Agron. J. 113: 1183–1196.
  • Michalik R., Wandzik I. (2020). A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers (basel). 12:2425.
  • Pretty J., Benton T.G., Bharucha Z.P., Dicks L.V., Flora C., Godfray C., Goulson D., Hartley S.E., Lampkin N., Morris C., Pierzinsky G., Prasad P.V.V., Reganold J.P., Rockstrom J., Smith P., Thorne P., Wratten S.D. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability. 1(8): 441-446.
  • Rockström J., Williams J., Daily G., Noble A., Matthews N., Gordon L., Wetterstrand H., DeClerck F., Shah M., Steduto P., Fraiture C., Hatibu N., Unver O., Bird J., Sibanda L., Smith J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio. 46(1): 4-17.
  • Shariff S., Katan M., Ahmad N.Z.A., Hussin H., Ismail N.A. (2022). Towards Achieving of Long-Term Agriculture Sustainability: a Systematic Review of Asian Farmers’ Modern Technology Farming Behavioural Intention and Adoption’s Key Indicators. Intern. Journal of Profess. Bus. Review. Miami.7(6): 1-52, e01130.
  • Stevanovic V., Todorovic J., Jovanovic N. (2021). Examples of good practice of digitalization of agriculture in Serbia, Bosnia and Herzegovina and Montenegro with an emphasis on biodiversity. Proceedings of the Conference Agriculture and Technology: 45-54.