1st International Symposium On Biotechnology (2023),  [271-276]

AUTHOR(S) / АУТОР(И): Valentina Nikolić, Marijana Simić, Slađana Žilić, Danka Milovanović, Beka Sarić, Marko Vasić


Download Full Pdf   

DOI: 10.46793/SBT28.271N


Lignocellulosic biomass represents the most abundant renewable material in the world, whereas agricultural residues, including those from maize cultivation, comprise a significant fraction of the total plant waste that can be repurposed for various applications. Lignocellulosic feedstocks are non-edible and consist mainly of: cellulose, hemicellulose, and lignin, along with extractive compounds. Pretreatment is required to separate the lignocellulosic biomass into its constituents for efficient utilization. Even after extensive research and development of numerous techniques, pretreatment remains one of the most expensive phases in converting lignocellulosic biomass into biobased products.


lignocellulosic biomass, agricultural waste, application, pretreatment.


  • Areepak C., Jiradechakorn T., Chuetor S., Phalakornkule C., Sriariyanun M., Raita M., Champreda V., Laosiripojana N. (2022). Improvement of lignocellulosic pretreatment efficiency by combined chemo-Mechanical pretreatment for energy consumption reduction and biofuel production. Renewable Energy, 182, 1094-1102.
  • Armah E. K., Chetty M., Adedeji J. A., Kukwa D. T. (2020). Valorization of Lignocellulosic and Microalgae Biomass. In Biotechnological Applications of Biomass. IntechOpen.
  • Awogbemi O., Von Kallon D. V. (2022). Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 100229.
  • Bayer E.A., Lamed R., Himmel M. (2007). The potential of cellulases and cellulosomes for cellulosic waste management, Current Opinion in Biotechnology 18, 237-245.
  • Ćilerdžić J., Galić M., Stajić M. (2022). From pomiculture waste to biotechnological raw material: efficient transformation using ligninosomes and cellulosomes from Pleurotus spp. Bioresources and Bioprocessing, 9(1), 66.
  • Knežević A, Stajić M, Vukojević J, Milovanović I (2014). The efect of trace elements on wheat straw degradation by Trametes gibbosa. International Biodeterioration & Biodegradation, 96, 152–156.
  • Mojović L., Pejin D., Lazić M. (2007). Bioetanol kao gorivo – stanje i perspektive, monografija, Tehnološki fakultet, Leskovac.
  • Okolie J. A., Nanda S., Dalai A. K., & Kozinski J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12 (5), 2145-2169.
  • Saha BC, Qureshi N, Gregory J, Kennedy GJ, Michael A, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration & Biodegradation, 109, 29–35.
  • Sanchez O. J., Cardona C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology, 99 (13), 5270-5295.
  • Singh A., Nanda S., Berruti F. (2020). A review of thermochemical and biochemical conversion of Miscanthus to biofuels. Biorefinery of alternative resources: targeting green fuels and platform chemicals, 195-220.
  • Semenčenko V., Mojović L., Petrović S., Ocić O. (2011). Novi trendovi u proizvodnji bioetanola. Hemijska industrija, 65 (2), 103-114.
  • Semenčenko V., Terzić D., Radosavljević M., Žilić S. (2009). Korišćenje agrorezidua kukuruza u proizvodnji biogoriva, bioapsorbenata i hrane za ljude i životinje. Book of Proceedings: Industrial waste 2nd International Scientific Conference on Waste Management, 14-17 September, Tara, Serbia, pp. 209-218.
  • Zhang R. Y., Liu H. M., Hou J., Yao Y. G., Ma Y. X., Wang X. D. (2021). Cellulose fibers extracted from sesame hull using subcritical water as a pretreatment. Arabian Journal of Chemistry, 14 (6), 103178.