1st International Symposium On Biotechnology (2023),  [205-211]

AUTHOR(S) / АУТОР(И): Blagoje Stojković, Nenad Đorđević, Aleksa Božičković, Saša Obradović


Download Full Pdf   

DOI: 10.46793/SBT28.205S


The paper presents a comparative overview of the influence of homofermentative and heterofermentative lactic acid bacteria (LAB) on the degree of proteolysis and aerobic stability in Fabacea and Poacea silages. When using Lactobacillus buchneri, compared to Lactobacillus plantarum, in alfalfa silages, a significant increase in the pH value (4.67:4.23), a decrease in the amount of lactic acid (11.8:24.3 g/kg DM) and an increase in the amount NH3-N (70.6:49.8 g/kg N). When using heterofermentative LAB (L. hilgardii and L. Buchneri) compared to the control treatment, a significant increase in the acetate:lactate ratio (3.64:1.85) and a decrease in the number of yeasts was found in corn silages, while there were no significant differences in pH value and amount of NH3-N. Due to the often negative impact of heterofermentative LAB on proteins in leguminous silages, research should be continued in order to determine the best LAB combinations for corn silage, where probiotic yeasts should also be included.


inoculation, LAB, silage, proteolysis, probiotic.


  • Addah W., Baah J., Okine E. K., and McAllister T. A. (2012). A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle.  Journal of Animal Science. 90, 1541-1552. doi: 10.2527/jas.2011-4085.
  • Blajman J E., Páez R B., Vinderola C G., Lingua M S., and Signorini M L.  (2018). A meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. Journal of Applied Microbiology 125. 1-15. doi: 10.1111/jam.14084
  • Ferrero F., Piano S., Tabacco E., and Borreani G. (2019). Effects of conservation period and Lactobacillus hilgardii inoculum on the fermentation profile and aerobic stability of whole corn and sorghum silages. Journal of Science of Food and Agriculture. 99, 2530-2540. doi: 10.1002/jsfa.9463
  • Đorđević N., Koljajić V., Grubić G. (1999). Influence of sulphuric acid as conservative on proteolysis of lucerne and red clover silage. 5th International Symposium ,,New trends in breeding farm animals’’. Biotechnology in Animal Husbandry 15, 287-297.
  • Đorđević N., Koljajić V., Grubić G. (2001). The proteolysis and fermentation intensity in lucerne conserved with phosphoric acid. IV international symposium: Systems of animal breeding and economic of animal production at the beginning of the new millenium, october 2-5, 2001. Biotechnology in Animal Husbandry, 17 (5-6), 213-218.
  • Đorđević N., Dinić B., Grubić G., Koljajić V., Dujić D. (2004). Control of the proteolytic processes in ensiled feeds. Acta Agriculturae Serbica 9 (17), 565-572.
  • Đorđević, N., Grubić G., Lević J., Sredanović S., Stojanović B., Božičković A., Lojanica, M. (2010). The influence of various factors on the degree of nitrogen matter changes in legume silages. 14. International Symposium Feed Technology, Institute for Food Technology, University of Novi Sad, International, 19-21 October, 2010. Proceedings, 215-221.
  • Đorđević N., Grubić G., Dinić B., Stojanović B., Božičković A. (2011a). Forage quality as a part of a modern concept of ruminant nutrition. International Scientific Symposium of Agriculture „Agrosym Jahorina 2011“, Jahorina, 10-12. November. Proceedings, 218-225.
  • Đorđević N., Grubić G., Dinić B., Stojanović B., Božičković A. (2011b). The Influence of compression level and inoculation on biochemical changes in lucerne silages. Journal of Agricultural Sciences 56 (1), 15-23.
  • Đorđević N., Grubić G., Dinić B., Stojanović B., Radivojević M., Božičković A. (2012). The influence of development phase, cut and degree of wilting on parametars of chemical composition, proteolysis and quality in lucerne silage. XXVI Meeting of agronomists, veterinarians, technologists and agro-economists. Proceedings of reasearch papers 18 (3-4), 41-47.
  • Đorđević N., Stojanović B., Grubić G., Božičković A. (2014) Production of voluminous food according to the principles of organic livestock farming. XXVIII Meeting of agronomists, veterinarians, technologists and agro-economists 19-20.02.2014., PKB Agroekonomik, Padinska Skela. Proceedings of reasearch papers 20 (1-4), 175-186.
  • Ðorđević N., Grubić G., Stojanović B., Božičković A., Blagojević M. (2018). The influence of inoculation on fermentation intensity and proteolysis in annual legume silages. Proceedings of the International Symposium on Animal Science 2018 (ISAS), 182-187.
  • Đorđević N., Stojanović B., Božičković A., Stojković B., Radonjić D. (2022). Influence of proteolysis and lipolysis in silage on milk production and milk fat composition in ruminants. XIII International Scientific Agriculture Symposium “AGROSYM 2022”, Jahorina, October 06 – 09, 2022., book of proceedings, 1045-1050.
  • Liu Q.H., Dong Z.H., Shao T. (2018). Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Animal Feed Science and Technology 236, 29-38.
  • McAllister T. A., Beauchemin K. A., Alazzeh A. Y., Baah J., Teather R. M., Stanford K.. 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Canadian  Journal of Animal Science. 91, 193-211. doi: 10.4141/cjas10047
  • McDonald P., Henderson A R., Heron S J E. (1991). The biochemistry of silage. Marlow (UK): Chalcombe Publications. 
  • Muck R. E., Nadeau E. M. G., McAllister T. A., Contreras-Govea F. E., Santos M. C., Kung L. Jr. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science. 101, 3980-4000. doi: 10.3168/jds.2017-13839. 
  • Nair J., Huaxin N., Andrada E., Yang H.E., Chevaux E, Drouin P,  McAllister T.A.,  Wang Y. (2020). Effects of inoculation of corn silage with Lactobacillus hilgardii and Lactobacillus buchneri on silage quality, aerobic stability, nutrient digestibility, and growth performance of growing beef cattle. Journal of Animal Science. 98 (10),  doi: 10.1093/jas/skaa267.
  • NRC (2021). Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press.
  • Ogunade I. M., Jiang Y., Kim D. H., Cervantes A. A. P., Arriola K. G., Vyas D., Weinberg Z. G., Jeong K. C., Adesogan A. T. (2017). Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. Journal of Dairy Science. 100, 1780-1794. doi: 10.3168/jds.2016-11745.
  • Xu S., Yang J., Qi M., Smiley B., Rutherford W., Wang Y., McAllister TA. (2019). Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage. Journal of Animal Science. 97(3), 1273-1285. doi: 10.1093/jas/skz021.