XIX међународна конференција Безбедност саобраћаја у локалној заједници (стр. 514-523)
АУТОР(И) / AUTHOR(S): Miloš Pljakić, Predrag Stanojević, Aleksandra Petrović
DOI: 10.46793/RSafLC24.514P
САЖЕТАК / ABSTRACT:
The significance of traffic safety issues often results from the frequency of traffic accidents depending on the level of observation. This study conducted a multifunctional analysis to develop and calibrate a spatial predictive model for traffic accidents with fatalities and injuries at the municipal level. Exposure measures commonly used as factors were employed in the model development with fixed effects to understand the underlying mechanisms. Considered factors encompassed population characteristics, the number of different vehicle categories, and the length of state roads per municipality. The results of this research indicate significant spatial correlations and relationships among the observed variables in the model. By applying the GWR methodology, it was found that the types of vehicles and the length of state roads have varying impacts on the frequency of accidents with fatalities and injuries. Based on these results, specific measures can be clearly defined for each local community.
КЉУЧНЕ РЕЧИ / KEYWORDS:
Traffic safety, Accidents analysis, Exposure measures, GWR tehnology
ЛИТЕРАТУРА / REFERENCES:
[1] Farid, A., Abdel-Aty, M., & Lee, J. (2018). A new approach for calibrating safety performance functions. Accident Analysis & Prevention, 119, 188-194.
[2] Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47(4), 431-452.
[3] Jovanis, P., & Delleur, J. (1983). Exposure-based analysis of motor vehicle accidents. Transportation Research Record, 910, 1-7.
[4] Papadimitriou, E., Yannis, G., Bijleveld, F., & Cardoso, J. L. (2013). Exposure data and risk indicators for safety performance assessment in Europe. Accident Analysis & Prevention, 60, 371-383.
[5] Pei, X., Wong, S. C., & Sze, N. N. (2012). The roles of exposure and speed in road safety analysis. Accident analysis & prevention, 48, 464-471.
[6] Pljakić, M. (2020). Предикција саобраћајних незгода у урбаним срединама. Универзитет у Новом Саду.
[7] Pljakić, M. (2023) ANALIZE U BEZBEDNOSTI SAOBRAĆAJA metode, modeli i alati, PRAKTIKUM, Fakultet tehničkih nauka, Univerzitet u Prištini – Kosovska Mitrovica, ISBN 978-86-81656-57-0, 2023.
[8] Pljakić, M., Jovanović, D., & Matović, B. (2022). The influence of traffic-nfrastructure factors on pedestrian accidents at the macro-level: The geographically weighted regression approach. Journal of safety research, 83, 248-259.
[9] Pljakić, M., Jovanović, D., Matović, B., & Mićić, S. (2019). Macro-level accident modeling in Novi Sad: A spatial regression approach. Accident Analysis & Prevention, 132, 105259.
[10] Van den Bossche, F., Wets, G., & Brijs, T. (2005). Role of exposure in analysis of road accidents: a Belgian case study. Transportation research record, 1908(1), 96-103.
[11] Vanparijs, J., Panis, L. I., Meeusen, R., & De Geus, B. (2015). Exposure measurement in bicycle safety analysis: A review of the literature. Accident Analysis & Prevention, 84, 9-19.
[12] Wang, C., Quddus, M. A., & Ison, S. G. (2013). The effect of traffic and road characteristics on road safety: A review and future research direction. Safety science, 57, 264-275.
[13] ABS (2023) Statistički izveštaj o stanju bezbednosti saobraćaja u Republici Srbiji za 2022. godinu, Agencija za bezbednost saobraćaja Republike Srbije.
[14] WHO (2023) Global status report on road safety 2023