Investigation of the possibility of interaction between lithium fluoride clusters and boron using LDI MS

2nd International Conference on Chemo and Bioinformatics ICCBIKG 2023 (176-179)

АУТОР(И) / AUTHOR(S): F. Veljkovic, D. Drakulic, A. Todorovic, S. Pejic, K. Bobic, I. Stajcic, S. Pajovic, S. Velickovic

Е-АДРЕСА / E-MAIL: filipveljkovic@vin.bg.ac.rs

Download Full Pdf   

DOI: 10.46793/ICCBI23.176V

САЖЕТАК / ABSTRACT:

It is known that the “superalkali” cluster Li2F can significantly improve the hydrogen storage capabilities in carbon materials; boron compounds play a similar role. However, the possibility of interactions of lithium fluoride clusters with boron and hydrogen has not been investigated so far. In this work, a laser desorption/ionization mass spectrometry (LDI MS) was used for this purpose. Preliminary results showed that the interaction between the “superalkali” Li3F cluster, boron and six hydrogen atoms is possible; the ion Li3FBH6+ was detected. Non-stoichiometric clusters of lithium fluoride can also combine with boron and hydrogen in the following manner: Li5F2BH5+ Li5F3BH2+ Li4F5BH4+ Li6F2B6H+, and Li8F6H+.

КЉУЧНЕ РЕЧИ / KEYWORDS:

“superalkali” clusters, LDI MS, hydrogen storage, boron

ЛИТЕРАТУРА / REFERENCES:

  • W. Lubitz, W. Tumas., Hydrogen: an overview, Chemical Reviews., 107 (2007) 3900-3903.
  • R. Coontz, B. Hanson., Not So Simple, Science, 305 (2004) 957.
  • L. Schlapbach, A. Züttel., Hydrogen-storage materials for mobile applications, Nature, 414 (2001) 353-358.
  • G. W. Crabtree, M. S. Dresselhaus, V. Buchanan., The hydrogen economy, Physics Today, 57 (2004) 39-44.
  • K.K. Gangu, S. Maddila, S.B.Mukkamala, S.B. Jonnalagadda., Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review, Journal of Energy Chemistry, 30 (2019) 132-144.
  • P.C. Rao, M. Yoon., Potential liquid-organic hydrogen carrier (LOHC) systems: A review on recent progress, Energies, 13 (2020) 6040.
  • X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu., Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Progress in Materials Science, 88 (2017) 1-48.
  • A. Gupta, G.V. Baron, P. Perreault, S. Lenaerts, R.G. Ciocarlan, P. Cool, P.G.M. Mileo, S. Rogge, V. Van Speybroeck, G. Watson, P.V.D. Voort, M. Houlleberghs, E. Breynaert, J. Martens, J.F.M. Denayer., Hydrogen clathrates: Next generation hydrogen storage materials, Energy Storage Mater, 41 (2021) 69-107.
  • G. Moussa, R. Moury, U.B. Demirci, T. Sener, P. Miele., Boron-based hydrides for chemical hydrogen storage, International Journal of Energy Research, 37 (2013) 825-842.
  • Y. Kojima., Hydrogen storage materials for hydrogen and energy carriers, International Journal of Hydrogen Energy, 44 (2019) 18179-18192.
  • Q. Sun, P. Jena, Q. Wang, M. Marquez., First-principles study of hydrogen storage on Li12C60, Journal of the American Chemical Society, 128 (2006) 9741-9745.
  • J. A. Teprovich Jr, M. S. Wellons, R. Lascola, S. J. Hwang, P. A.Ward, R. N. Compton, R. Zidan., Synthesis and characterization of a lithium-doped fullerane (Lix-C60-Hy) for reversible hydrogen storage, Nano Letters, 12 (2012) 582-589.
  • A. Yoshida, T. Okuyama, T. Terada, S. Naito., Reversible hydrogen storage/release phenomena on lithium fulleride (LinC60) and their mechanistic investigation by solid-state NMR spectroscopy, Journal of Materials Chemistry, 21 (2011) 9480-9482.
  • S. Veličković, V. Koteski, J. Belošević Čavor, V. Đorđević, J. Cvetićanin, J. Đustebek, M. Veljković, O. Nešković., Experimental and theoretical investigation of new hypervalent molecules LinF (n=2-4), Chemical Physics Letters, 448 (2007) 151-155.
  • K. Wang, Z. Liu, X. Wang, X. Cui., Enhancement of hydrogen binding affinity with low ionization energy Li2F coating on C60 to improve hydrogen storage capacity, International Journal of Hydrogen Energy, 39 (2014) 15639-15645.
  • K. Srinivasu, S.K. Ghosh., Theoretical studies on hydrogen adsorption properties of lithium decorated diborane (B2H4Li) and diboryne (B2H2Li2), International Journal of Hydrogen Energy, 36 (2011) 15681-15688.