11th International Scientific Conference Research and Development of Mechanical Elements and Systems IRMES (2025) [pp. 101-106]
AUTHOR(S) / AUTOR(I): Pavle LJUBOJEVIĆ
, Tatjana LAZOVIĆ
, Marina DOJČINOVIĆ 
Download Full Pdf 
DOI: 10.46793/IRMES25.107LJ
ABSTRACT / SAŽETAK:
The paper analyses data obtained from cavitation erosion testing of MS1 tool steel. The testing samples, cylindrical in shape with a height of 5 mm and a diameter of 10 mm, were fabricated using Direct Metal Laser Sintering (DMLS), a 3D printing technique. The samples were subjected to cavitation erosion testing in accordance with the ASTM G32 standard for a total duration of 4 hours. Mass loss measurements were recorded every 30 minutes. Based on the collected data, key parameters such as Cumulative Mass Loss, Cumulative Volume Loss, Mean Depth of Cavitation Erosion (MDE), and Mean Depth Erosion Rate (MDER) were determined and analyzed. Understanding material behaviour under cavitation conditions is crucial for its potential application in manufacturing mechanical components, particularly gears, bearings, and valves, where cavitation-induced damage is a common issue in operational environments. Given that the specimens were produced by metal powder-based 3D printing, it is especially relevant to assess the performance of such material under these conditions. This insight is particularly valuable for the geometric optimization of components to minimize erosion, where additive manufacturing offers significant advantages over conventional production technologies.
KEYWORDS / KLJUČNE REČI:
Cavitation Erosion; MS1; ASTM G32; Mean Depth Erosion Rate (MDER); Additive Manufacturing
ACKNOWLEDGEMENT / PROJEKAT:
This work was supported by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia (Contracts: 451-03-137/2025-03/ 200105 and 451-03-136/2025-03/200135) and CA23155 –
REFERENCES / LITERATURA:
- Dojčinović, M.: Razaranje materijala pod dejstvom kavitacije, Teh.-Met. Fak. Beogr., 978-86-7401- 305-2, 2013
- Adama Maiga M., et al.: Analysis of the critical pressure of cavitation bubbles, Meccanica, 53., 4–5., pp. 787–801, 1572-9648, 2018
- Young, F. R.: Cavitation. World Scientific, 978-1-78326- 186-4, 1999
- Lauterborn, W.: Cavitation and Inhomogeneities in Underwater Acoustics, Proceedings of the First International Conference, July 9–11, 1979, Göttingen, Fed. Rep. of Germany, Springer Science & Business Media, 978-3-642-51070-0, 2012
- Laborde, J.-L. et al.: Acoustic cavitation field prediction at low and high frequency ultrasounds, Ultrasonics, 36., 1–5., pp. 581–587, 0041624X,1998
- Padilla-Martinez, J.P. et al.: Optic cavitation with CW lasers: A review, Fluids, 26., 12., pp. 122007,1089-7666, 2014
- Kurz T., et al.: Optic cavitation in an ultrasonic field. Phys. Rev. E, 74., 6., pp. 066307, 1550-2376, 2006
- A. Ferrari: Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 20160345, 2017
- Caupin, F., Herbert, E.: Cavitation in water: a review, Comptes Rendus Phys., 7., 9–10., pp. 1000–1017, 1878- 1535, 2006
- Gogate, P. R., Pandit, A.B.: A review and assessment of hydrodynamic cavitation as a technology for the future, Ultrason. Sonochem., 12., 1–2., pp. 21-27, 13504177, 2005
- Neppiras, E. A.: Acoustic cavitation series: part one, Ultrasonics, 22., 1., pp. 25–28, 0041624X, 1984
- Smirnov, I.V. et al.: Analysis of Dependences of Threshold Parameters for Acoustic Cavitation Onset in a Liquid on an Ultrasonic Frequency, Hydrostatic Pressure, and Temperature, Tech. Phys., 67., 2., pp. 161-170, 1090-6525, 2022
- Hofmann, J. et al.: Comparison of acoustic and hydrodynamic cavitation: Material point of view, Fluids, 35., 1, pp. 017112, 1070-6631, 2023
- Battarra, M., Mucchi, E.: Incipient cavitation detection in external gear pumps by means of vibro-acoustic measurements, Measurement, 129., pp. 51-61, 0263-2241, 2018
- Thiagarajan, D., Vacca, A.: Modelling of the Lateral Lubricating Interfaces in External Gear Machines Considering the Effects of Cavitation, BATH/ASME 2018 Symposium on Fluid Power and Motion Control, Bath, UK: American Society of Mechanical Engineers, 978-0-7918-5196-8, 2018
- Ouyang T., et al.: Vibration and cavitation in high-speed gears caused by faults, Int. J. Mech. Sci., 250., pp. 108322, 0020-7403, 2023,.
- Ouyang T., et al.: Numerical investigation of vibration- induced cavitation for gears considering thermal effect, Int. J. Mech. Sci., 233., p. 107679, 0020-7403, 2022
- Ouyang, T. et al.: CFD-vibration coupled model for predicting cavitation in gear transmissions, J. Mech. Sci., 225., pp. 107377, 0020-7403, 2022
- Ouyang, T. et al.: Cavitation mechanism of high-speed helical gears induced by vibration, Int., 193., pp. 109440, 0301-679X, 2024
- Brewe, D.E.: Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings, Tribol., 108., 4., pp. 628-637, 1528-8897, 1986
- Garner, D. R. et al.: Cavitation Erosion Damage in Engine Bearings: Theory and Practice, J. Eng. Power, 102., 4., 847-857,0022-0825, 1980
- Dowson, D., Taylor, C.M.: Cavitation in Bearings, Annu. Rev. Fluid Mech., 11., 1., pp. 35-65, 1545-4479, 1979
- Ausas R., et al.: The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings, J. Tribol., 129., 4., pp. 868-875, 1528-8897, 2007
- Chen, Y.-M., Mongis, J.: Cavitation wear in plain bearing: Case study, Ind., 6., 2., pp. 195-201, 2257-7750, 2005
- He, T. et al.: Influence of Cavitation and Shaft Deformation in the Analysis of Lubrication of the Stern Bearing, Sci., 13., 15, pp. 9033, 2076-3417, 2023
- Rasep, Z.: A study of cavitation effect in a journal bearing using CFD: A case study of engine oil, palm oil and water, Jurnal Tribologi, 28., pp. 48-62,
- Dhande, D. Y., Pande, D.W.: Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled Fluid Structure Interaction considering cavitation, J. King Saud Univ. – Eng. Sci., 30., 4., pp. 345-354, 10183639, 2018
- Cai, L. et al.: The Numerical Simulation of Pure-Oil Lubrication Journal Bearing, Mater. Res., 143–144., 609-613, 1662-8985, 2010
- Meng, F., Yang, T.: Preliminary study on mechanism of cavitation in lubricant of textured sliding bearing, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 227., 7., pp 695- 708, 2041-305X, 2013
- Qian, J. et al.: A comprehensive review of cavitation in valves: mechanical heart valves and control valves, Bio-Des. Manuf., 2., 2., pp. 119-136, 2522-8552, 2019
- Martin, C. S. et al.: Cavitation Inception in Spool Valves, Fluids Eng., 103., 4., pp. 564-575, 1528-901X, 1981
- Jin, Z. et al.: A Parametric Study of Hydrodynamic Cavitation Inside Globe Valves, Fluids Eng., 140., 3., 031208, 1528-901X, 2018
- Gao, H. et al.: Investigation of Cavitation Near the Orifice of Hydraulic Valves, Inst. Mech. Eng. Part G J. Aerosp. Eng., 220., 4, pp. 253-265, 2041-3025, 2006
- Ferrari, J., Leutwyler, Z.: Fluid Flow Force Measurement Under Various Cavitation State on a Globe Valve Model, Volume 4: Fluid-Structure Interaction ASME 2008 Pressure Vessels and Piping Conference, pp. 157-168, ASMEDC, Chicago, Illinois, USA, 978-0-7918-4827-2, 2008
- Jazi, A.M., Rahimzadeh, H.: Waveform analysis of cavitation in a globe valve, Ultrasonics, , 6–7., pp. 577-582, 0041624X, 2009
- Li J., et al.: Numerical Investigation of Methodologies for Cavitation Suppression Inside Globe Valves, Appl. Sci., 10., 16., pp. 5541, 2076-3417, 2020
- http://eos.org – EOS
- Herzog D., et al.: Additive manufacturing of metals, Acta Mater., 117., pp. 371-392, 13596454, 2016
- Wong, K.V., Hernandez, A.: A Review of Additive Manufacturing, Sch. Res. Not., 2012., 1., pp. 208760, 2356-7872, 2012
- Shellabear, M., Nyrhilä, O.: DMLS – DEVELOPMENT HISTORY AND STATE OF THE ART, Laser assisted netshape engineering 4, proceedings of the 4th LANE, 21-24, 2004
- Bineli, A.R.R. et al.: DIRECT METAL LASER SINTERING (DMLS): TECHNOLOGY FOR DESIGN AND CONSTRUCTION OF MICROREACTORS, 6º Congress Obrasileiro De Engenharia De Fabrica Ção,11., 2011
- Bochnia, J. et al.: The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements, Materials, 16., 13., pp. 4699, 1996-1944, 2023
- Dev Singh, D. et al.: Powder bed fusion process: A brief review, Today Proc., 46., pp. 350-355, 22147853, 2021
- Croccolo D., et al.: Fatigue Response of As-Built DMLS Maraging Steel and Effects of Aging, Machining, and Peening Treatments, Metals, 8., 7., pp. 505, 2075-4701 2018
- Ghani, S.A.C. et al.: Dimensional accuracy of internal cooling channel made by selective laser melting (SLM) And direct metal laser sintering (DMLS) processes in fabrication of internally cooled cutting tools. MATEC Web Conf., 90., pp. 01058, 2017
- ISO-1143-2021, Metallic materials — Rotating bar bending fatigue testing
- ASTM G32-16, Test Method for Cavitation Erosion Using Vibratory Apparatus
- Ljubojević, M. et al.: Cavitation Resistance of Laser-Sintered MS1 Steel. Sci. Sinter., 2024, on-line first
- Mitelea I., et al.: Cavitation Erosion Characteristics of the EN AW-6082 Aluminum Alloy by TIG Surface Remelting, Materials, 16., 7., pp. 2563, 1996-1944, 2023
- Kwok, C.T. et al.: Cavitation erosion and damage mechanisms of alloys with duplex structures, Sci. Eng. A, 242., 1–2., pp. 108-120, 09215093, 1998
- Steller, J.: International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation, Wear, 233–235., 51-64, 0043-1648, 1999
- Abdi, H.: The Method od Least Squares, Encyclopedia of measurement and statistics 1, pp. 530-532, 2007
- Mohammadizadeh, S. et al.: Experimental Analysis of Cavitation Erosion: Parameter Sensitivity and Testing Protocols, Coatings, , 10., pp. 1288, 2079-6412, 2024
- Patrăşcoiu, C., et al.: New contributions to cavitation erosion curves modeling, FME Transactions, , pp. 39-43, 2006