UREĐENJE EFIKASNOSTI I PERSONALIZACIJE USLUGA PUTEM PRIMENE VEŠTAČKE INTELIGENCIJE U HOTELSKOJ INDUSTRIJI

Ekonomist 2 (2024) (9-31)

AUTHOR(S) / АУТОР(И): Tamara Gajić, Dragan Vukolić, Snežana Knežević

Download Full Pdf   

DOI: 10.46793/EKONOMIST3.2.1G

ABSTRACT / САЖЕТАК:

Ovo istraživanje ispituje uticaj veštačke inteligencije (VI) na unapređenje operativne efikasnosti i personalizaciju usluga u hotelskom sektoru. VI tehnologije su postale ključni faktor u transformaciji hotelskog poslovanja, omogućavajući automatizaciju zadataka, optimizaciju resursa, kao i pružanje personalizovanih usluga gostima. Primenom VI, hoteli postižu veću efikasnost, smanjenje operativnih troškova i prilagođavanje usluga individualnim preferencijama gostiju. Nalazi istraživanja potvrđuju da VI značajno doprinosi poboljšanju brzine usluge, smanjenju troškova rada i unapređenju korisničkog iskustva kroz personalizaciju. Ipak, izazovi kao što su prekomerna zavisnost od tehnologije i zaštita privatnosti podataka ostaju ključna pitanja na koja treba dati odgovor. Rezultati istraživanja pružaju praktične uvide za hotelijerski sektor i postavljaju temelje za dalja istraživanja o integraciji VI tehnologija u hotelsko poslovanje.

KEYWORDS / КЉУЧНЕ РЕЧИ:

VI/AI, personalizacija usluga, efikasnost poslovanja, hotelska industrija

REFERENCES / ЛИТЕРАТУРА: 

  1. Buhalis, D., & Cheng, E. S. Y. (2020). Exploring the use of chatbots in hotels: technology providers’ perspective. In Information and Communication Technologies in Tourism 2020: Proceedings of the International Conference in Surrey, United Kingdom, January 08–10, 2020 (pp. 231-242). Springer International Publishing.
  2. Buhalis, D., & Leung, R. (2018). Smart hospitality—Interconnectivity and interoperability towards an ecosystem. International Journal of Hospitality Management71, 41-50.
  3. Bulchand-Gidumal, J. (2022). Impact of artificial intelligence in travel, tourism, and hospitality. In Handbook of e-Tourism(pp. 1943-1962). Cham: Springer International Publishing.
  4. Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2023). Assessing organizational users’ intentions and behavior to AI integrated CRM systems: A meta-UTAUT approach. Information Systems Frontiers25(4), 1299-1313.
  5. Dash, R., McMurtrey, M., Rebman, C., & Kar, U. K. (2019). Application of artificial intelligence in automation of supply chain management. Journal of Strategic Innovation and Sustainability14(3).
  6. Davis, F.D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), pp.319-340.
  7. Gajić, T., Đoković, F., Blešić, I., Petrović, M. D., Radovanović, M. M., Vukolić, D., … & Mićović, A. (2023a). Pandemic boosts prospects for recovery of rural tourism in Serbia. Land12(3), 624.
  8. Gajić, T., Petrović, M. D., Blešić, I., Radovanović, M. M., & Syromiatnikova, J. A. (2021). The power of fears in the travel decision–covid-19 against lack of money. Journal of Tourism Futures9(1), 62-83.
  9. Gajić, T., Vukolić, D., Zrnić, M., & Dénes, D. L. (2023). The quality of hotel service as a factor of achieving loyalty among visitors. Менаџмент у хотелијерству и туризму11(1), 67-77.
  10. Jeong, M., & Lambert, C. U. (2001). Adaptation of an information quality framework to measure customers’ behavioral intentions to use lodging Web sites. International Journal of Hospitality Management20(2), 129-146.
  11. Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics77, 101925.
  12. Khan, H. A. (2024). Innovative Services, Processes and Product Design Crucial for Enhancing Customer Experience. In Marketing and Design in the Service Sector: Enhancing Customer Experience(pp. 63-81). Emerald Publishing Limited.
  13. Lukanova, G., & Ilieva, G. (2019). Robots, artificial intelligence, and service automation in hotels. In Robots, artificial intelligence, and service automation in travel, tourism and hospitality(pp. 157-183). Emerald Publishing Limited.
  14. Milohnić, I., & Kapeš, J. (2024). Exploring the barriers and prospects for service robot adoption in the hotel industry: A management perspective. European journal of tourism research38, 3805-3805.
  15. Nam, K., Dutt, C. S., Chathoth, P., Daghfous, A., & Khan, M. S. (2021). The adoption of artificial intelligence and robotics in the hotel industry: prospects and challenges. Electronic Markets31, 553-574.
  16. Paraskevas, A., & Buhalis, D. (2002). Outsourcing IT for small hotels: The opportunities and challenges of using application service providers. Cornell Hotel and Restaurant Administration Quarterly43(2), 27-39.
  17. Pearson, S., & Benameur, A. (2010, November). Privacy, security and trust issues arising from cloud computing. In 2010 IEEE Second International Conference on Cloud Computing Technology and Science(pp. 693-702). IEEE.
  18. Pelau, C., Dabija, D. C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior122, 106855.
  19. Preacher, K. J., Zhang, G., Kim, C., & Mels, G. (2013). Choosing the optimal number of factors in exploratory factor analysis: A model selection perspective. Multivariate behavioral research48(1), 28-56.
  20. Rane, N. (2023). Enhancing customer loyalty through Artificial Intelligence (AI), Internet of Things (IoT), and Big Data technologies: improving customer satisfaction, engagement, relationship, and experience. Internet of Things (IoT), and Big Data Technologies: Improving Customer Satisfaction, Engagement, Relationship, and Experience (October 13, 2023).
  21. Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics2(1), 21-33.
  22. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International journal of medical education2, 53.
  23. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D., 2003. User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), pp.425-478.
  24. Vukolić, D., Gajić, T., & Penić, M. (2022). The effect of social networks on the development of gastronomy–the way forward to the development of gastronomy tourism in Serbia. Journal of Tourism Futures.
  25. Vukolić, D., Gajić, T., Petrović, M. D., Bugarčić, J., Spasojević, A., Veljović, S., … & Petrović, T. (2023). Development of the concept of sustainable agro-tourism destinations—exploring the motivations of Serbian gastro-tourists. Sustainability15(3), 2839.
  26. Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management29(1), 507-529.
  27. Zhong, L., Zhang, X., Rong, J., Chan, H. K., Xiao, J., & Kong, H. (2021). Construction and empirical research on acceptance model of service robots applied in hotel industry. Industrial Management & Data Systems121(6), 1325-1352