Extraction of selected elements from commercial fertilizers

Chemia Naissensis Volume 4, No.2 (2021) (стр. 77-88) 

АУТОР(И) / AUTHOR(S): Stefan S. Petrović, Jelena М. Mrmošanin and Biljana B. Arsić

Е-АДРЕСА / E-MAIL: jelena.mrmosanin@pmf.edu.rs

Download Full Pdf   

DOI: 10.46793/ChemN4.2.77P


Two commercial fertilizers preparation methods for ICP OES analysis of were used for two different fertilizers types: urea and NPK (mineral fertilizer containing nutrients N, P, and K), as organic and inorganic fertilizers, respectively. The aim of our research was the comparison of two methods for the preparation of samples, the determination of the contents of elements, and the comparison of obtained results with the maximum allowed concentrations. The first preparation method consists of digestion with 18.5% HCl, and the other method is the digestion with aqua regia. Regarding the extraction of some secondary nutrients and micronutrients (Ca, Mg, Fe, Mn, Cu, Zn, and B) from NPK fertilizer, better extraction was achieved using the first method for B, Ca, and Mg, while the other method was better for Fe, Mn, Cu, and Zn. On the basis of the results of the analysis, the digestion with aqua regia is suitable for almost all investigated 3d metals from both samples, except for NPK, for which the degree of the extraction is somewhat higher. Determined concentrations of some toxic elements (As, Cr, Cd, Ni, and Pb) do not cross the maximum allowable concentrations (MAC).


urea, NPK fertilizer, elements, ICP OES


  • Andrade, D.F., & Rodrigues Pereira-Filho, E. (2016). Direct determination of contaminants and major and minor nutrients in solid fertilizers using laser-induced breakdown spectroscopy (LIBS). Journal of Agricultural and Food Chemistry, 64(41), 7890-7898. DOI: 10.1021/acs.jafc.6b04028 Bartos, J.M., Boggs, B.L., Falls, J.H., & Siegel, S.A. (2014). Determination of phosphorus and potassium in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry: single-laboratory validation. Journal of AOAC International, 97, 687–699. DOI: 10.5740/jaoacint.12-399.
  • Bechlin, M.A., Fortunato, F.M., de Silva, R.M., Ferreira, E.C., & Neto, J.A.G. (2014). A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using
  • high-resolution continuum source atomic and molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 240–244. DOI: 10.1016/j.sab.2014.09.012.
  • Borges, A.R., Becker, E.M., Lequeux, C., Vale, M.G.R., Ferreira, S.L.C., & Welz, B. (2011). Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling. Spectrochimica Acta Part B: Atomic Spectroscopy, 66, 529–535.DOI: 10.1016/j.sab.2011.04.004. Borges, A.R., Francois, L.L., Becker, E.M., Vale, M.G.R., & Welz, B. (2015). Method development for the determination of chromium and thallium in fertilizer samples using graphite furnace atomic absorption spectrometry and direct solid sample analysis. Microchemical Journal, 119, 169–175. DOI: 10.1016/j.microc.2014.11.007.
  • De Morais, C.P., Barros, A.I., Santos Junior, D., Ribeiro, C.A., Crespi, M.S., Sanesi, G.S., Neto, J.A.G., & Ferreira, E.C. (2017). Calcium determination in biochar-based fertilizers by laser- induced breakdown spectroscopy using sodium as internal standard. Microchemical Journal, 134, 370–373. DOI: 10.1016/j.microc.2017.07.005.
  • De Oliveira Souza, S., Froncois, L.L., Borges, A.R., Vale, M.G.R., & Araujo, R.G.O. (2015). Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 114, 58–64. DOI: 10.1016/j.sab.2015.10.003. European Union. (2019). Link: https://data.consilium.europa.eu/doc/document/PE-76-2018- INIT/en/pdf, accessed 01/02/2021
  • Finch, H.J.S., Samuel, A.M., & Lane, G.P.F. (2014). Fertilisers and manures. In Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed., Woodhead Publishing, pp. 63-91. https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/literature/ICP/J092.pdf, accessed:19/01/2021
  • Kane, P.F., & Hall, W.L., Jr. (2006). Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study. Journal of AOAC International, 89, 1447–1466. DOI: 10.1093/jaoac/89.6.1447.
  • Kimura, M. (2016). Testing Methods for Fertilizers; Food and Agricultural Materials Inspection Center (FAMIC): Saitama, Japan, 2016; pp. 92–111, 259–269.
  • Li, W., Simmons, P., Shrader, D., Herrman, T.J., & Dai, S.Y. (2013). Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer. Talanta,112, 43–48. DOI: 10.1016/j.talanta.2013.03.029.
  • Lima, A.F., Da Costa, M.C., Ferreira, D.C., Richter, E.M., & Munoz, R.A.A. (2015). Fast ultrasound-assisted treatment of inorganic fertilizers for mercury determination by atomic absorption spectrometry and microwave-induced plasma spectrometry with the aid of the cold- vapor technique. Microchemical Journal, 118, 40–44. DOI: 10.1016/j.microc.2014.07.012.
  • Machado, R.C., Amaral, C.D.B., Nóbrega, J.A., & Nogueira, A.R.A. (2017). Multielemental determination of As, Bi, Ge, Sb, and Sn in agricultural samples using hydride generation coupled to microwave-induced plasma optical emission spectrometry. Journal of Agricultural and Food Chemistry,65, 4839-4842. DOI: 10.1021/acs.jafc.7b01448.
  • Mortvedt, J.J., Mays, D.A., & Osborn, G. (1981). Uptake by wheat of cadmium and other heavy metal contaminants in phosphate fertilizers. Journal of Environmental Quality, 10(2), 193–197. DOI: 10.2134/jeq1981.00472425001000020014x.
  • Muimba-Kankolongo, A. (2018). Fruit production. In Food crop production by smallholder farmers in Southern Africa (pp. 275-312). Academic Press.
  • Nicolodelli, G., Senesi, G.S., de Oliveira Perazzoli, I.L., Marangoni, B.S., De Melo Benites, V., & Milori, D.M.B.P. (2016). Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers. Science of the Total Environment, 565, 1116–1123. DOI: 10.1016/j.scitotenv.2016.05.153.
  • Nunes, L.C., de Carvalho, G.G.A.., Santos Junior, D., & Krug, F.J. (2014). Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 97, 42–48. DOI: 10.1016/j.sab.2014.04.011.
  • Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57. DOI: 10.1016/j.scitotenv.2007.09.031.
  • Official Gazette of the Republic of Serbia, No. 41/09. (2009). Law on plant protection products. Otero, N., Vitoria, L., Soler, A., & Canals, A. (2005). Fertiliser characterisation: major, trace and rare  earth               elements.  Applied           Geochemistry,                              20,        1473-1488.         DOI: 10.1016/j.apgeochem.2005.04.002.
  • Resende, L.V., & Nascentes, C.C. (2016). A simple method for the multi-elemental analysis of organic fertilizer by slurry sampling and total reflection X-ray fluorescence. Talanta, 147, 485– 492. DOI: 10.1016/j.talanta.2015.10.007.
  • Rui, Y.-k., Hao, J., & Rui, F. (2012). Determination of seven plant nutritional elements in potassium dihydrogen phosphate fertilizer from northeastern China. Journal of Saudi Chemical Society, 16, 89–90. DOI: 10.1016/j.jscs.2010.11.003.
  • Safarova, V.I., Shaidullina, G.F., Mikheeva, T.N., Kudasheva, F.Kh., & Nizamutdinova, N.R. (2011). Methods of sample preparation of soil, bottom sediments, and solid wastes for atomic absorption determination of heavy metals. Inorganic Materials, 47, 1512–1517. DOI: 10.1134/S0020168511140184.
  • ThermoScientific. (2017). The analysis of nitrogen, other nutrient and toxic elements in fertilizers using the Thermo Scientific iCAP 7400 ICP-OES. Link: https://assets.thermofisher.com/TFS- Assets/CMD/Application-Notes/an-40833-icp-oes-nitrogen-nutrients-toxic-elements-fertilizers- an40833-en.pdf, accessed: 19/01/2021
  • Viso, E., & Zachariadis, G. (2018). Method development of phosphorus and boron determination in fertilizers by ICP-AES. Separations, 5, 36, DOI:10.3390/separations5030036.
  • Zeremski-Škorić, T., Ninkov, J., Sekulić, P., Milić, S., Vasin, J., Dozet, D., & Jakšić, S. (2010). Sadržaj teških metala u odabranim đubrivima koja su u upotrebi u Srbiji. Ratarstvo i Povrtarstvo, 47(1), 281–287.
  • Zhao, X., & Wang, D. (2010). Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.). Journal of Environmental Sciences, 22, 1184–1188. DOI: 10.1016/s1001-0742(09)60236-9.