Products of Prolonged Autoxidation of Simple Dihydric Phenols in the Presence of Copper(II) Ions – An Electron Spin Resonance Study

Chemia Naissensis Volume 4, No.2 (2021) (стр. 56-69) 

АУТОР(И) / AUTHOR(S):  Milica G. Nikolić, Nenad S. Krstić and Dragan M. Đorđević


Download Full Pdf   

DOI: 10.46793/ChemN4.2.56N


Electron spin resonance (ESR) spectroscopy was used for characterizing the products obtained by prolonged autoxidation of simple dihydric phenols (hydroquinone, catechol, and 4-methylcatechol) in the presence of copper(II) ions. Room temperature ESR spectra revealed that both paramagnetic copper(II) ions and organic radicals are present in obtained autoxidation products similarly to the humic acid complexed copper(II) ions. The ratio of organic radical signal intensity to the copper(II) ion signal intensity suggests that the smallest amount of copper(II) ions is incorporated in the hydroquinone autoxidation product while the highest amount of copper(II) ions is incorporated in the autoxidation product of catechol. Satisfactory computer simulations of experimental ESR spectra were obtained by considering only one type of copper(II) ion binding site for hydroquinone autoxidation product and two distinct types of copper(II) ion binding sites for catechol and 4-methylcatechol autoxidation products. Parameters obtained by the computer simulation of ESR spectra indicated prevalent ionic bonding of copper(II) ions in polymeric matrices with tetrahedral distortion at copper(II) ion binding sites and negligible exchange interactions between them. Products obtained by the hydroquinone and catechol autoxidation have more similar characteristics in comparison to the product obtained by the 4-methylcatechol autoxidation where more expressed ionic bonding of copper(II) ions, and smaller tetrahedral distortion are present. Due to the dipolar interactions of oxygen-centered organic radicals in autoxidation products with paramagnetic copper(II) ions, their ESR linewidths are larger and g-values smaller in comparison to the values found in humic acids from various soil types.


Hydroquinone, Catechol, 4-methylcatechol, Autoxidation, Copper(II) ion, ESR


  • Alfieri, M. L., Moccia, F., D’Errico, G., Panzella, L., d’Ischia, M., & Napolitano, A. (2020). Acid treatment enhances the antioxidant activity of enzymatically synthesized phenolic polymers. Polymers, 12, Art. 2544.
  • Barriquello, M. F., da Costa Saab, S., Filho, N. C., & Martin-Neto, L. (2010). Electron paramagnetic resonance characterization of a humic acid-type model. Journal of the Brazilian Chemical Society, 21, 2302-2307.
  • Bartkowiak, A., Jezierska, J., & Spychaj, T. (1998). An EPR study of polysaccharide copper(II) complexes in composite dextran/epichlorohydrin gels. Polymer Bulletin, 41, 199-206.
  • Bianculli, R. H., Mase, J. D., & Schulz, M. D. (2020). Antiviral polymers: Past approaches and future possibilities. Macromolecules, 53, 9158-9186.
  • Bryukhovetskaya, L. V., Zherebtsov, S. I., Malyshenko, N. V., & Ismagilov, Z. R. (2016). Sorption of copper cations by native and modified humic acids. Coke and Chemistry, 59, 420-423.
  • Cha, J.-Y., Kim, T.-W., Choi, J. H., Jang, K.-S., Khaleda, L., Kim, W.-Y., & Jeon, J.-R. (2017).
  • Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: A green route for synthesizing humic-like fertilizers. Journal of the Agricultural and Food Chemistry, 65, 1167-1177.
  • Cheshire, M. V., Berrow, M. L., Goodman, B. A., & Mundie, C. M. (1977). Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica et Cosmochimica Acta, 41, 1131-1138.
  • Doğan, F., Topallar, H., Kaya, İ., & Yürekli, M. (2013). The effect of the oxidant used during polymerization on the solid-state decomposition kinetics of poly(4-methyl catechol). Journal of Thermal Analysis and Calorimetry, 111, 1515-1522.
  • Dubey, S., Singh, D., & Misra, R. A. (1998). Enzymatic synthesis and various properties of poly(catechol). Enzyme and Microbial Technology, 23, 432-437.
  • Etcheverry, S. B., Di Virgilio, A. L., Nascimento, O. R., & Williams, P. A. M. (2012). Dinuclear copper(II) complexes with valsartan. Synthesis, characterization and cytotoxicity. Journal of Inorganic Biochemistry, 107, 25-33.
  • Friedman, M., & Jürgens, H. S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48, 2101-2110.
  • Gamov, G. A., Zavalishin, M. N., Khokhalova, A. Yu., Gashnikova, A. V., Kiselev, A. N., Zav’yalov, A. V., & Aleksandriiskii, V.V. (2020). Kinetics of the oxidation of protocatechuic and gallic acids by atmospheric oxygen in the presence of laccase from T. versicolor. Russian Journal of Physical Chemistry A, 94, 294-300.
  • García, P., Romero, C., Brenes, M., & Garrido, A. (1996). Effect of metal cations on the chemical oxidation of olive o-diphenols in model systems. Journal of Agricultural and Food Chemistry, 44, 2101-2105.
  • Giannakopoulos, E., Christoforidis, K. C., Tsipis, A., Jerzykiewicz, M., & Deligiannakis, Y. (2005). Influence of Pb(II) on the radical properties of humic substances and model compounds. Journal of Physical Chemistry A, 109, 2223-2232.
  • Giannakopoulos, E., Drosos, M., & Deligiannakis, Y. (2009). A humic-acid-like polycondensate produced with no use of catalyst. Journal of Colloid and Interface Science, 336, 59-66.
  • Goodman, B. A., & Raynor, J. B. (1970). Electron spin resonance of transition metal complexes. Advances in Inorganic Chemistry and Radiochemistry, 13, 135-362.
  • Hoffmann, S. K., Goslar, J., Ratajczak, I., & Mazela, B. (2008). Fixation of copper-protein formulation in wood: Part 2. Molecular mechanism of fixation of copper(II) in cellulose, lignin and wood studied by EPR. Holzforschung, 62, 300-308.
  • Kivelson, D., & Neiman, R. (1961). ESR studies on the bonding in copper complexes. The Journal of Chemical Physics, 35, 149-155.
  • Kobayashi, S., & Makino, A. (2009). Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chemical Reviews, 109, 5288-5353.
  • Kozlevčar, B., & Šegedin, P. (2008). Structural analysis of a series of copper(II) coordination compounds and correlation with their magnetic properties. Croatica Chemica Acta, 81, 369-379.
  • Łabanowska, M., Bidzińska, E., Dyrek, K., Fortuna, T., Pietrzyk, S., Rożnowski, J., & Socha, R. P. (2008). Cu2+ ions as a paramagnetic probe in EPR studies of radicals generated thermally in starch. Starch, 60, 134-145.
  • Litvin, V. A., & Abi Njoh, R. (2020). Humic-like acid derived from 1,2-naphthoquinone. French- Ukrainian Journal of Chemistry, 8, 140-149.
  • Litvin, V. A., Minaev, B. F., & Baryshnikov, G. V. (2015). Synthesis and properties of synthetic fulvic acid derived from hematoxylin. Journal of Molecular Structure, 1086, 25-33.
  • Maier, G. P., Bernt, C. M., & Butler, A. (2018). Catechol oxidation: considerations in the design of wet adhesive materials. Biomaterials Science, 6, 332-339.
  • McBride, M.B., & Sikora, F. J. (1990). Catalyzed oxidation reactions of 1,2-dihydroxybenzene (catechol) in aerated aqueous solutions of Al3+. Journal of Inorganic Biochemistry, 39, 247-262.
  • McBride, M.B., Sikora, F. J., & Wesselink, L. G. (1988). Complexation and catalyzed oxidative polymerization of catechol by aluminum in acidic solution. Soil Science Society of America Journal, 52, 985-993.
  • McGarvey, B. R. (1967). The isotropic hyperfine interaction. The Journal of Physical Chemistry, 71, 51-66.
  • Merdy, P., Guillon, E., Aplincourt, M., Dumonceau, J., & Vezin, H. (2002). Copper sorption on a straw lignin: Experiments and EPR characterization. Journal of Colloid and Interface Science, 245, 24-31.
  • Mitić, Ž., Cakić, M., Nikolić, G. M., Nikolić, R., Nikolić, G. S., Pavlović, R., & Santaniello, E. (2011). Synthesis, physicochemical and spectroscopic characterization of copper(II)- polysaccharide pullulan complexes by UV-vis, ATR-FTIR, and EPR. Carbohydrate Research, 346, 434-441.
  • Naveed, K.-ur-R., Wang, L., Yu, H., Ullah, R. S., Haroon, M., Fahad, S., Li, J., Elshaarani, T., Khan, R. U., & Nazir, A. (2018). Recent progress in the electron paramagnetic resonance study of polymers. Polymer Chemistry, 9, 3306-3335.
  • Nikolić, G. M., Živanović, S. C., Krstić, N. S., & Nikolić, M. G. (2019). The study of Mg(II) ion influence on catechol autoxidation in weakly alkaline aqueous solution. Russian Journal of Physical Chemistry A, 93, 2656-2660.
  • Nkhili, E., Loonis, M., Mihai, S., El Hajji, H., & Dangles, O. (2014). Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms. Food & Function, 5, 1186-1202.
  • Oess, A., Cheshire, M. V., McPhail, D. B., & Vedy, J.-C. (1999). Polymerization: A possible consequence of copper-phenolic interactions. In Berthelin, J., Huang, P. M., Bollag, J.-M., & Andreux, F. (Eds.), Effects of mineral-organic-microorganism interactions on soil and freshwater environments (pp. 151-158). New York: Springer Science+Business Media.
  • Patil, N., Mavrandonakis, A., Jérôme, C., Detrembleur, C., Casado, N., Mecerreyes, D., Palma, J., & Marcilla, R. (2021). High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. Journal of Materials Chemistry A, 9, 505-514.
  • Procter, I. M., Hathaway, B. J., & Nicholls, P. (1968). The electronic properties and stereochemistry of the copper(II) ion. Part I. Bis(ethylenediamine) copper(II) complexes. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968, 1678-1684.
  • Rinaldi, A. C., Porcu, M. C., Curreli, N., Rescigno, A., Finazzigró, A., Pedersen, J. Z., Rinaldi, A., & Sanjust, E. (1995). Autoxidation of 4-methylcatechol: A model for the study of the biosynthesis of copper amine oxidases quinonoid cofactor. Biochemical and Biophysical Research Communications, 214, 559-567.
  • Sakaguchi, U., & Addison, A. W. (1979). Spectroscopic and redox studies of some copper(II) complexes with biomimetic donor atoms: Implications for protein copper centers. Journal of the Chemical Society, Dalton Transactions, 1979, 600-608.
  • Slikboer, S., Grandy, L., Blair, S. L., Nizkorodov, S. A., Smith, R. W., & Al-Abadleh, H. A. (2015). Formation of light absorbing soluble secondary organics and insoluble polymeric particles from the dark reaction of catechol and guaiacol with Fe(III). Environmental Science & Technology, 49, 7793-7801.
  • Su, J., Noro, J., Fu, J., Wang, Q., Silva, C., & Cavaco-Paulo, A. (2018). Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. Journal of Cleaner Production, 202, 792-798.
  • Sun, X., Bai, R., Zhang, Y., Wang, Q., Fan, X., Yuan, J., Cui, L., & Wang, P. (2013). Laccase- catalyzed oxidative polymerization of phenolic compounds. Applied Biochemistry and Biotechnology, 171, 1673-1680.
  • Watanabe, A., McPhail, D. B., Maie, N., Kawasaki, S., Anderson, H. A., & Cheshire, M. V. (2005). Electron spin resonance characteristics of humic acids from a wide range of soil types. Organic Geochemistry, 36, 981