Analyses of structure and thermal properties of synthesized crosslinked poly(1-vinyl-2-pyrrolidone-co-vinyl acetate) hydrogels

Chemia Naissensis Volume 4, No.2 (2021) (стр. 29-48) 

АУТОР(И) / AUTHOR(S):  Snežana S. Ilić-Stojanović, Zorica B. Eraković, Vukašin Ugrinović and Slobodan D. Petrović


Download Full Pdf   

DOI: 10.46793/ChemN4.2.29SI


This paper describes the process for the synthesis of chemically crosslinked copolymer hydrogels based on monomer 1-vinyl-2-pyrrolidone and comonomer vinyl acetate, using the varied content of ethylene glycol dimethacrylate as a crosslinker, by the free radical polymerization method with thermal initiation. The content of unreacted reactants after poly(1-vinyl-2-pyrrolidone-co-vinyl-acetate), p(VP-VA), hydrogels synthesis was examined using high-pressure liquid chromatography (HPLC) method. Structure characterization of the obtained p(VP-VA) hydrogels was performed using the Fourier transform infrared spectroscopy (FTIR). In this study, the influences of crosslinker content and temperature on the swelling behaviour of p(VP-VA) were studied. Quantities of unreacted comonomers and crosslinker, calculated in relation to the initial amount present in the reaction mixture, confirmed their successful conversion into p(VP-VA) hydrogels. These unreacted values of 1-vinyl-2-pyrrolidone (in range of 0.605-1.609%), vinyl acetate (in range of 2.486-4.798%), and ethylene glycol dimethacrylate (in range of 0.889-3.240%) were within acceptable limits, and they were removed from the final products. FTIR spectra were verified that the copolymerization process was performed, and chemically crosslinking of polymer chains occurred by breaking double bonds from the reactants. Obtained crosslinked copolymers could be classified in the class of negative-thermosensitive hydrogels because they can swell and pass through a phase transition when heated from the swollen state at 25ºC to contracted state at 80ºC.


hydrogel, chemically crosslinking, 1-vinyl-2-pyrrolidone, vinyl acetate, swelling, thermosensitivity


  • Anderson, C. C., Rodriguez, F., & Thurston, D. A. (1979). Crosslinking aqueous poly (vinyl pyrrolidone) solutions by persulfate. Journal of Applied Polymer Science, 23(8), 2453-2462. doi:10.1002/app.1979.070230823.
  • Ashland. (2022). PVP/VA polymers chemistry: PVP polymers and VP derivatives. polymers. Accessed on 29 March 2022.
  • Atkins, B. L., Bashaw, R. N., & Harper, B. G. (1972). Absorbent product containing a hydrocelloidal composition. U.S. Pat 3,669,103 Dow Chemical Co, Michigan, US.
  • Browne, E., Worku, Z. A., & Healy, A. M. (2020). Physicochemical properties of poly-vinyl polymers and their influence on ketoprofen amorphous solid dispersion performance: a polymer selection case study. Pharmaceutics, 12(5), 433. doi:10.3390/pharmaceutics12050433.
  • Bühler, V. (2005). Polyvinylpyrrolidone – excipients for pharmaceuticals: povidone, crospovidone and copovidone (pp. 179-205). Springer-Verlag, Germany.
  • D’Amelia, R. P., Mancuso, J., & Nirode, W. (2019). The characterization of poly n-vinyl pyrrolidone-polyvinyl acetate (PVP-PVAc) copolymers and blends by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and elemental analysis. Journal of Polymer and Biopolymer Physics Chemistry, 7, 1-9. doi:10.12691/jpbpc-7-1-1.
  • Eugene, B., & James, C. (1982). Preparation of polyvinylpyrrolidone or vinyl-pyrrolidone/vinyl acetate copolymers of various molecular weights using a single initiator system. EP 0104042 A2 GAF Corporation, New York, US.
  • European Commission. (2003). European Union risk assessment report 1-vinyl-2-pyrrolidone. EUR 20846 EN, Vol. 39, 2nd Priority List, European Communities, Italy.
  • Gulrez, S. K. H., Al-Assaf, S., & Phillips, G. O. (2011) Hydrogels: methods of preparation, characterisation and applications. Chapter 5. In A. Carpi (Ed.), Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications (pp. 117- 150). London: InTech.
  • Haaf, F., Sanner, A., & Straub, F. (1985). Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polymer Journal, 17(1), 143-152. doi:10.1295/polymj.17.143.
  • Henglein, A. (1959). Crosslinking of polymers in solution under the influence of g-radiation. The Journal of Physical Chemistry, 63(11), 1852-1858. doi:10.1021/j150581a016.
  • Ilić-Stojanović, S., & Eraković, Z. (2019). Characterisation of synthesised crosslinked hydrogels based on 1-vinyl-2-pirrolydinone. Knowledge-International Journal, 35(3) 755-760.
  • Ilić-Stojanović, S., Nikolić L., Nikolić V. D., & Petrović S. D. (2017). Smart hydrogels for pharmaceutical applications. Chapter 44. In: Information Resources Management Association (Ed.). Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications (pp. 1133-1164). Hershey: IGI Global.
  • Jorge, J. H., Giampaolo, E. T., Vergani, C. E., Machado, A. L., Pavarina, A. C., & Carlos, I. Z. (2006). Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic     resins. Journal     of     Applied     Oral     Science, 14,     203-207.     doi:10.1590/S1678- 77572006000300011.
  • Koda, T., Tsuchiya, H., Yamauchi, M., Ohtani, S., Takagi, N., & Kawano, J. (1990). Leachability of denture-base acrylic resins in artificial saliva. Dental Materials, 6(1), 13-16. doi:10.1016/0109- 5641(90)90037-F.
  • Kwon, H.-J., Oh, Y.-J., Jang, J.-H., Park, J.-E., Hwang, K.-S., & Park, Y.-D. (2015). The effect of polymerization conditions on the amounts of unreacted monomer and bisphenol A in dental composite resins. Dental Materials Journal, 34(3), 327-335. doi:10.4012/dmj.2014-230.
  • Milosavljević, N. B. (2010). Sinteza, karakterizacija i primena hidrogelova za izdvajanje bakra, kadmijuma i cinka iz vodenih rastvora. PhD Thesis. Faculty of Technology and Metallurgy, University of Belgrade. (in Serbian).
  • Personal Care Products Council. (2017, October 2). Concentration of use by FDA product category – vinylpyrrolidone polymers. Unpublished data submitted by the Personal Care Products Council.
  • Rothe, H., Fautz, R., Gerber, E., Neumann, L., Rettinger, K., Schuh, W., & Gronewold, C. (2011). Special aspects of cosmetic spray safety  evaluations:  Principles  on  inhalation  risk  assessment. Toxicology Letters, 205(2), 97-104. doi:10.1016/j.toxlet.2011.05.1038.
  • Sa’adun, N. N., Subramaniam, R., & Kasi, R. (2014). Development and characterization of poly(1- vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes. The Scientific World Journal, ID 254215. doi:10.1155/2014/254215.
  • Schildknecht C. E. (1953) Polyvinyl pyrrolidone gels and process of producing the same. U.S. Pat. 2,658,045 A, Gen Aniline & Film Corp. (New Jersey, US).
  • Senak, L., Cullen, J., Suszczynski, P., Malsbury, A., Feeley, L., Wu, C.-S., Tallon, M., & Malawer, E. (2008). Analysis of residual vinyl pyrrolidone monomer in polyvinylpyrrolidone with a mixed mode separation, using a fast gel permeation chromatography column. Journal of Liquid Chromatography & Related  Technologies®, 31(17),  2587-2602. doi:10.1080/10826070802352801.
  • Teodorescu, M., & Bercea, M. (2015). Poly(vinylpyrrolidone)–a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54(9), 923-943. doi:10.1080/03602559.2014.979506.