Germination of Paulownia elongata S.Y. Hu seeds under heavy metal-induced stress conditions

7th International Scientific Conference Modern Trends in Agricultural Production, Rural Development and Environmental Protection (2025) [pp. 239-246]  

AUTHOR(S) / АУТОР(И): Gorica Đelić , Milica Pavlović 

Download Full Pdf   

DOI: 10.46793/7thMTAgricult.23DJ

ABSTRACT / САЖЕТАК:

The germination of Paulownia elongata seeds under heavy metal-induced stress is critical for its potential use in phytoremediation of contaminated soils. Understanding how heavy metals affect early growth stages of P. elongata helps evaluate its tolerance and suitability for soil remediation. This study examines the effects of varying concentrations of MnCl₂, CdCl₂, ZnCl₂, FeCl₂, and NaCl on seed germination percentage, germination energy, relative germination index (RGI), mean germination time (MGT), and root growth. Germination tests were conducted under controlled conditions with concentrations ranging from 10³ mol/m³ to 10⁻³ mol/m³, alongside a control group treated with distilled water. Results indicated a concentration-dependent inhibitory effect for all tested salts. At 10³ mol/m³, germination was completely inhibited, demonstrating acute toxicity. Cd²⁺ showed the highest toxicity, with germination rates dropping to 66.8% at 10⁻³ mol/m³, prolonged MGT, and low RGI values, highlighting its detrimental impact on plant development. Mn²⁺ and Na⁺ exhibited less severe effects compared to other metals. These findings underscore the sensitivity of P. elongata to heavy metal stress, particularly at higher concentrations. Further research is needed to explore the species’ adaptive mechanisms, including metal uptake dynamics, antioxidant production, and the regulation of genes linked to abiotic stress tolerance. Such studies could enhance the application of P. elongata in sustainable remediation strategies for polluted environments.

KEYWORDS / КЉУЧНЕ РЕЧИ:

Paulownia elongata S.Y. Hu, seed germination, root growth, abiotic stress tolerance

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This investigation was supported by the Ministry of Education, Science and Technological Development (Agreement No. 451-03-137/2025-03/ 200122) and Ministry of Science, Technological and Innovation of the Republic of Serbia (Agreement No. 451-03-136/2025-03/ 200122).

REFERENCES / ЛИТЕРАТУРА:

  • Aiman, H. S., Fariduddin, Q., Sayat, B. A., & Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30, 165.
  • Alagawany, M., Farag, M. R., Sahfi, M. E., Elnesr, S. S., Alqaisi, O., El-Kassas, S., Al-wajeeh, A. S., Taha, A. E., & Abd E-Hack, M. E. (2022). Phytochemical characteristics of Paulownia trees wastes and its use as unconventional feedstuff in animal feed. Animal Biotechnology, 33, 586–593.
  • Astrogo, I. A. G., & Alcarez-Melandez, L. (2010). Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccorini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic Journal of Biotechnology, 13(5). https://doi.org/10.2225/vol13-issue5
  • Carpenter, S. B., & Smith, N. D. (1979). Germination of Paulownia seeds after stratification and dry storage. Tree Planters’ Notes, 30(4), 4–6.
  • Dżugan, M., Miłek, M., Grabek-Lejko, D., Hęclik, J., Jacek, B., & Litwińczuk, W. (2021). Antioxidant activity, polyphenolic profiles and antibacterial properties of leaf extract of various Paulownia spp. clones. Agronomy, 11, 1–15.
  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17, 3782.
  • Kim, S. K., Cho, S. B., & Moon, H. I. (2010). Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytotherapy Research, 24, 1898–1900.
  • Komljenović, I., & Todorović, V. (1998). Opšte ratarstvo – praktikum. Poljoprivredni fakultet, Banja Luka.
  • Lee, Y., Jang, J., Jeon, Y., Kim, H., Jang, G., & Yoon, Y. (2021). Assessing the effects of accumulated Cd(II) on seed germination and root development of Arabidopsis thaliana. Applied Biological Chemistry, 64, 87. https://doi.org/10.1186/s13765-021-00660-z
  • Li, Y. (2008). Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan Journal of Biological Sciences, 11(9), 1268–1272.
  • Ling, T., Meiying, G., & Jun, R. (2015). Effects of cadmium on seed germination, coleoptile growth, and root elongation of six pulses. Polish Journal of Environmental Studies, 24(1), 295–299.
  • Liu, C., Ma, J., Sun, J., Cheng, C., Feng, Z., Jiang, H., & Yang, W. (2017). Flavonoid-rich extract of Paulownia fortunei flowers attenuates diet-induced hyperlipidemia, hepatic steatosis and insulin resistance in obesity mice by AMPK pathway. Nutrients, 9(9), 959. https://doi.org/10.3390/nu9090959
  • Moreira, I. N., Martins, L. L., & Mourato, M. P. (2020). Effect of Cd, Cr, Cu, Mn, Ni, Pb and Zn on seed germination and seedling growth of two lettuce cultivars (Lactuca sativa L.). Plant Physiology Reports, 25(2), 347–358. https://doi.org/10.1007/s40502-020-00509-5
  • Santandrea, G., Calamassi, R., Bennici, A., & Schiff, S. (1995). Mg2+ and water stress effects on germination and growth of Nicotiana tabacum var. BEL W3. Giornale Botanico Italiano, 129(4), 1144–1145.
  • Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.
  • Sławińska, N., Zając, J., & Olas, B. (2023). Paulownia organs as interesting new sources of bioactive compounds. International Journal of Molecular Sciences, 24(2), 1676. https://doi.org/ 10.3390/ijms24021676
  • Stanković, D., Igić, R., Šijačić-Nikolić, M., Vilotić, D., & Pajević, S. (2009b). Sadržaj teških metala nikla i olova u listovima Paulownia elongata S.Y. Hu i Paulownia fortunei Hems. iz Srbije. Archives of Biological Sciences, 61(4), 827–834.
  • Stanković, M. S., Nikolić, B., Krstić, D., & Vilotić, D. (2009a). Heavy metals in the leaves of tree species Paulownia elongata S.Y. Hu in the region of the city of Belgrade. Biotechnology & Biotechnological Equipment, 23(3), 1330–1336.
  • Ting, H., Brajesh, N. V., Zachary, D. P., Prahlad, P., & Nirmal, J. (2016). Paulownia as a medicinal tree: Traditional uses and current advances. European Journal of Medicinal Plants, 14(1), 1–15.
  • Wang, Y., Qian, J., Zhang, C., & Zhang, Z. (2024). Effects of cadmium stress on seed germination and physiology and biochemistry during early seedling growth of Masson pine (Pinus massoniana Lamb.). Forest Science, 70(3), 242–249.
  • Wożniak, M., Gałązka, A., & Frąc, M. (2018). Paulownia—Szybko rosnące, wielofunkcyjne drzewo bioenergetyczne. Kosmos, 67, 781–789.
  • Yoursheng, C., & Sziklai, O. (1985). Preliminary study on the germination of Toora sinensis (A. Juss) Roem. Seed from eleven Chinese provenances. Forest Ecology and Management, 10, 269–281.
  • Zhang, M., Chen, Y., Du, L., Wu, Y., Liu, Z., & Han, L. (2020). The potential of Paulownia fortunei seedlings for the phytoremediation of manganese slag amended with spent mushroom compost. Ecotoxicology and Environmental Safety, 196, 110538.