Functional role of Pseudomonas rhizobacteria in enhancing plant growth under stress-adaptive agricultural systems

7th International Scientific Conference Modern Trends in Agricultural Production, Rural Development and Environmental Protection (2025) [pp. 119-128]  

AUTHOR(S) / АУТОР(И): Marijana Pešaković , Jelena Tomić , Boris Rilak , Vesna Đurović , Leka Mandić , Jovana Todorović , Tamara Krstić Tomić 

Download Full Pdf   

DOI: 10.46793/7thMTAgricult.11P

ABSTRACT / САЖЕТАК:

This study explores the functional traits of Pseudomonas spp. isolated from rhizospheric soils and their potential as plant growth-promoting rhizobacteria (PGPR). Four isolates were selected and characterized based on morphological, physiological, and biochemical parameters. The results demonstrated their tolerance to various abiotic stresses, resistance to heavy metals and pesticides, and ability to produce plant-beneficial compounds, including siderophores, hydrogen cyanide, and indole-3-acetic acid. Although certain PGPR traits were absent, the overall profile indicates the potential utility of these isolates in sustainable agriculture and stress-prone environments.

KEYWORDS / КЉУЧНЕ РЕЧИ:

Pseudomonas spp., plant growth-promoting rhizobacteria, stress tolerance, siderophores, sustainable agriculture

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This study was supported by the Ministry of Technological Development and Innovations of the Republic of Serbia, Contract No. 451-03-136/2025-03/200215.

REFERENCES / ЛИТЕРАТУРА:

  • Alavi, P., Starcher, M. R., Zachow, C., Müller, H., & Berg, G. (2013). Root-microbe systems: The effect and mode of interaction of stress tolerant plant growth promoting bacteria (PGPB). Environmental and Experimental Botany, 89, 1–14.
  • Bakker, A. W., & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19(4), 451–457.
  • Beneduzi, A., Ambrosini, A., & Passaglia, L.M.P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.
  • Bending, G. D., & Turner, M. K. (1999). Interaction of pesticide application and biotic stress on the microbial community structure. FEMS Microbiology Ecology, 30(3), 171–181.
  • Christensen, W.B. (1946). Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology, 52(4), 461–466.
  • Datta, C., & Basu, P.S. (2000). Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiological Research, 155(2), 123–127.
  • Dobereiner, J. (1995). Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 134–141). Academic Press.
  • Edwards, C.S., & Ewing, W.H. (1939). The starch hydrolysis test for the differentiation of the typhoid-colon aerogenes groups of bacteria. Journal of Bacteriology, 38(2), 193.
  • Erdos, G.W., & Tully, R.E. (1986). Gelatin hydrolysis test. In P. Gerhardt, R. G. E. Murray, W. A. Wood, & N. R. Krieg (Eds.), Methods for general and molecular bacteriology (pp. 165–180). American Society for Microbiology.
  • Freeman, D.J., Falkiner, F.R., & Keane, C.T. (1989). New method for detecting slime production by coagulase-negative staphylococci. Journal of Clinical Pathology, 42(8), 872–874.
  • Galanos, C., Lüderitz, O., Westphal, O., Götze, E., & Mayer, H. (1985). Preparation and properties of a standardized egg lecithin from hen’s egg yolk. Hoppe-Seyler’s Zeitschrift für physiologische Chemie, 366(7), 1255-1264.
  • Gill, S.R., & Vickers, R.M. (1969). Catalase test. In Laboratory procedures for the diagnosis of intestinal parasites (p. 44). U.S. Department of Health, Education, and Welfare, Public Health Service.
  • Glick, B.R., Patten, C.L., Holguin, G., & Penrose, D.M. (2007). Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press.
  • Gomiero, T. (2016). Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability, 8, 281.
  • Gomes, N.C.M., Fagbola, O., Costa, R., Rumjanek, N. G., Buchner, A., Mendonça-Hagler, L., & Smalla, K. (2003). Dynamics of diazotrophic bacterial communities associated with maize (Zea mays L.) grown in Brazilian ferralsol under different management practices. Environmental Microbiology, 5(11), 1061–1070.
  • Gray, E.J., & Smith, D.L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412.
  • Hancock, R.E.W., & Speert, D.P. (2000). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resistance Updates, 3(4), 247–255.
  • Holt, J. G., Krieg, J. N., Sneath, P., Staley, J., & Williams, S. (1994). Bergey’s manual of determinative bacteriology. Williamson and Wilkins. Baltimore, pp. 786-788.
  • Jarak, I., & Đurić, M. (2004). Disk Diffusion Method for Assessing Antibiotic Resistance in Bacterial Isolates. Journal of Antimicrobial Agents, 20(3), 112–118.
  • Koskey, G., Mburu, S.W., Awino, R., Njeru, E.M., & Maingi, J.M. (2021). Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Frontiers in Sustainable Food Systems, 5, 130.
  • Lanui, K. (1987). Determination of lipase activity in soil. Soil Biology and Biochemistry, 19(6), 787–791.
  • Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis, E.W., Lim, C.K., Shaffer, B.T., & Paulsen, I.T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784.
  • Lopes, M.J.D.S., Dias-Filho, M.B., & Gurgel, E.S.C. (2021). Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, 606454.
  • MacFaddin, J.F. (2000). Biochemical Tests for Identification of Medical Bacteria (3rd ed.). Lippincott Williams & Wilkins.
  • Menkin, B. (1963). A medium for the selective cultivation of fungi. Mycopathologia et Mycologia Applicata, 19(1-2), 77–85.
  • Milagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1–6.
  • Nadarajah, K., & Abdul Rahman, N.S.N. (2023). The microbial connection to sustainable agriculture. Plants, 12(12), 2307.
  • Nies, D.H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339.
  • Oteino, N., Lally, R.D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.
  • Parameswari, E., Lakshmi, P.T.V., & Sundaram, A.L. (2009). Resistance of Pseudomonas spp. to heavy metals and antibiotics. Asian Journal of Biological Sciences, 4(2), 142–148.
  • Patten C.L., & Glick B.R. (2002). Regulation of indole acetic acid production in Pseudomonas putida R12-2 by tryptophan and the stationary phase sigma factor RpoS. Canadia Journal of Microbiology, 48, 635–642.
  • Pešaković, M., Tomić, J., Cerović, R., Štampar, F., Jakopič, J., Karaklajić Stajić, Ž., Milenković, S., & Mikulič-Petkovšek, M. (2023). Evaluating effects of a new liquid vermicompost-based product on fruit quality in organic strawberries (Fragaria × ananassa Duch.). Biological Agriculture & Horticulture, 39(7), 1–14.
  • Pešaković, M., Tomić, J., Djurović, V., Rilak, B., Karaklajić Stajić, Ž., Mandić, L., & Đukić, D. (2024). Towards sustainable agriculture: Harnessing Azotobacter species for enhanced crop yield and environmental resilience. In Proceedings of the 6th International Scientific Conference Modern Trends in Agricultural Production, Rural Development and Environmental Protection (pp. 217–230). Vrnjačka Banja, Republic of Serbia.
  • Quinn, P.J., Carter, M.E., Markey, B.K., & Carter, G. (1994). Clinical veterinary microbiology. Mosby-Year Book Europe Limited.
  • Randhawa, P., & Kullar, R. (2010). Methods for assessing resistance of bacterial isolates to heavy metals and pesticides. Journal of Microbiological Techniques, 15(2), 45–52.
  • Rajkumar, M., Ae, N., & Freitas, H. (2010). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77(2), 153–160.
  • Raaijmakers, J.M., Vlami, M., & de Souza, J.T. (2002). Antibiotic production by bacterial biocontrol agents of plant diseases. Molecular Plant Pathology, 3(6), 311–317.
  • Saritha, K.V., Sreenivasulu, K., & Reddy, G. (2015). Antagonistic and plant growth-promoting potential of Pseudomonas spp. isolated from rhizosphere of groundnut. Brazilian Journal of Microbiology, 46(2), 497–504.
  • Saharan, B.S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.
  • Silby, M.W., Winstanley, C., Godfrey, S.A.C., Levy, S.B., & Jackson, R.W. (2011). Pseudomonas genomes: Diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652–680.
  • Simons, A. W. (1923). A medium for the differentiation of the organisms of typhoid-colon aerogenes groups and for the isolation of certain fungi. Journal of Bacteriology, 8(3), 191-208.
  • Singh, R., Paul, D., & Jain, R.K. (2010). Biofilms: Implications in bioremediation. Trends in Microbiology, 14(9), 389–397.
  • Souza, R., Ambrosini, A., & Passaglia, L.M.P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419.
  • Stanier, R.Y., Palleroni, N.J., & Doudoroff, M. (1966). The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology, 43(2), 159–271.
  • Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96(11), 5995–6000.
  • Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586.
  • Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9, 174.
  • Zahir, Z.A., Arshad, M., & Frankenberger, W.T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97–168.
  • Zhang, Y., Zeng, Y., Cheng, Y., Jia, X., & Li, W. (2013). Screening and identification of an exopolysaccharide-producing Pseudomonas sp. strain and optimization of its fermentation conditions. International Journal of Biological Macromolecules, 59, 289–294.