33. Savetovanje sa međunarodnim učešćem Zavarivanje 2024, (p. S5.3)
AUTHOR(S) / АУТОР(И): Emina Husković, Mersida Manjgo, Ljubica Milović, Edvard Bjelajac, Gorazd Lojen, Tomaž Vuherer
Download Full Pdf 
DOI: 10.46793/Zavarivanje24.S5.3H
ABSTRACT / САЖЕТАК:
TIG zavarivanje se koristi kada je potreban dobar izgled zavara i najviši kvalitet šava. Ipak, proces ima i neke velike nedostatke kao što su relativno mala dubina provara i niska produktivnost. Za povećanje dubine provara i/ili produktivnosti, umesto tradicionalno čistog Ar, mogu se koristiti gasne mešavine koje sadrže gasove visoke toplotne provodljivosti. Za austenitne nerđajuće čelike, pošto nisu skloni stvaranju vodoničnih prslina, H2 je pogodan za primenu u smeši gasova. Pošto je H2 aktivni gas, proces se naziva Volfram Aktivni Gas (TAG). U ovom istraživanju lim od austenitnog nerđajućeg čelika je zavaren brzinom zavarivanja od 40 cm min-1, sa čistim argonom i mešavinom gasova Ar+7,5 H2. Sa čistim Ar, struja zavarivanja od 220 A bila je premala da bi se dostigao pun provar na limu od 3 mm. Sa mešavinom aktivnog gasa 7,5 H2, samo 130 A je bilo dovoljno za provar uz nepromenjenu brzinu zavarivanja.
KEYWORDS / КЉУЧНЕ РЕЧИ:
TIG zavarivanje, aktivni zaštitni gas, parametri zavarivanja, geometrija zavara, mehanička svojstva
REFERENCES / ЛИТЕРАТУРА:
- Dobránszky, J., Tamás, S., Nagy-Hinst, A., Eichhardt, A.G., Gyura, L., Weld Pool Characteristics of the ATIG-Welded Joints, Proceedings, Duplex 2007: International Conference and Expo, Grado, Italy, June 18-20, 2007. https://www.academia.edu/97614500/Weld_Pool_Characteristics_of_the_ATIG_Welded_Joi nts?uc–sb–sw=10182265. Accessed on 10. 7. 2024.
- Sándor, T., Dobránszky, J., The experiences of activated tungsten inert gas (ATIG) welding applied on 1.4301 type stainless steel plates, Materials Science Forum 537-538 (2007), pp. 6370. Online: doi:10.4028/www.scientific.net/MSF.537-538.63.
- Touileb, K., Ouis, A., Djoudjou, R., Hedhibi, A.C., Alrobei, H., Albaijan, I., Alzahrani, B., Sherif, El-Sayed M., Abdo., H.S.: Effects of ATIG Welding on Weld Shape, Mechanical Properties, and Corrosion Resistance of 430 Ferritic Stainless Steel Alloy. Metals 2020, 10, 404; doi:10.3390/met10030404. Accessed on 10. 7. 2020.
- Modenesi, P.J., Apolinario,E.R., Pereira, I.M., TIG welding with single-component fluxes, Journal of Materials Processing Technology 99 (2000) pp. 260-265
- Lucas, W., Howse, D., Activating flux – Increasing the performance and productivity of the TIG and plasma processes, Welding and Metal Fabrication 64(1) (1996), pp. 11-17.
- C.J. Anderson, R. Wiktorowicz, Improving productivity with ATIG welding, Welding and Metal Fabrication 64(3) (1996), pp. 108-109.
- Paskell T., Lundin, C., Castner H., GTAW flux increases weld joint penetration, Welding Journal 76 (1997), pp. 57–62.
- Tathgir, S., Bhattacharya A., Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas, Mater. Manuf. Process. 31, (2016), pp. 235–342.
- Klobčar, D., Tušek, J., Bizjak, M., Simončič, S., Lešer, V., Active flux tungsten inert gas welding of austenitic stainless steel AISI 304, Metalurgija 55, (2016), pp. 617–620.
- Adams, A.E., NJC flux reduces distortion on turbine engine housing for defense contractor. Welding Journal 1 (2000), pp. 92.
- Marya, S., Theoretical and Experimental Assessment of Chloride Effects in the A-TIG Welding of Magnesium, Weld. World 46 (2002), pp. 7–21.
- Lyttle, K.A., Shielding Gases for Welding. In: ASM Handbook Vol 6: Welding brazing and soldering (Eds. D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards), ASM International, Materials Park, OH, USA, 1993.
- Lincoln Electric, Gas Metal Arc Welding – Product and Procedure Selection https://www.lincolnelectric.com/assets/global/Products/Consumable_MIGGMAWWiresSuperArc–SuperArcL–56/c4200.pdf; accessed on 15. 1. 2022.
- Australian Stainless Steel Development Association. https://www.assda.asn.au/blog/311–shielding–gases–for–welding–and–their–effects–onstainless–steel–properties
- Axxair Group, Handbook The shielding gases in orbital TIG welding. https://offres.axxair.com/en/download–handbook–shielding–gases–in–orbital–tigwelding?hsCtaTracking=8e951f04–b09d–4cc8–ad58–21814bf24bec%7C415e6449–b602–45fd8d6b–0523eb3fc833#form. Accessed on 10. 76. 2024.
- Messer Austria GmbH, Inoxline H7 – data sheet. https://www.messer.at/documents/640492/4313269/Inoxline_H7_tech.pdf/a6086f48–9c0fd7fb–cd1b–5792fea84208?t=1596637854467; Accessed on 10. 7. 2024.
- DIN EN 10088-2:2014-12: Nichtrostende Stähle – Teil 2: Technische Lieferbedingungen für Blech und Band aus korrosionsbeständigen Stählen für allgemeine Verwendung; Deutsche Fassung EN 10088-2:2014. DIN e. V., Berlin, Germany, 2014.
- EN ISO 14343:2017: Welding consumables – Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels – Classification (ISO 14343:2017), The European Committee for Standardization (CEN), Brussels, Belgium, 2017.
- EN ISO 14175:2008: Welding consumables – Gases and gas mixtures for fusion welding and allied Processes. European committee for standardization (CEN), Brussels, Belgium 2008.
- EN ISO 6892-1:2019; Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature. European Committee for Standardization: Brussels, Belgium, 2019; pp. 1–87.
- EN ISO 6507-1:2018; Metallic Materials – Vickers Hardness Test – Part 1: Test Method. European Committee for Standardization: Brussels, Belgium, 2018.
- ISO 9015-1:2001; Destructive Tests on Welds in Metallic Materials—Hardness Testing— Part 1: Hardness Test on Arc Welded Joints. International Organization for Standardization: Geneva, Switzerland, 2001.
- https://www.matweb.com/search/DataSheet.aspx?MatGUID=45a7e183e0444c49adde731aba 5ab77f. Accessed on 10. 7. 2024.
- http://www.steelnumber.com/en/steel_composition_eu.php?name_id=100. Accessed on 10. 7. 2024.