Orthogonal Functions Based Model Predictive Control of Magnetic Levitation System

XVII International Conference on Systems, Automatic Control and Measurements, SAUM 2024 (pp. 117-120)

АУТОР(И) / AUTHOR(S): Miodrag Spasić , Xiaolei Li , Dragan Antić , Nikola Danković , Jelena Dimitrijević , Nebojša Jotović

Download Full Pdf  

DOI:  10.46793/SAUM24.117S

САЖЕТАК / ABSTRACT:

Magnetic levitation systems (MLS) enable contactless, frictionless motion through electromagnetic fields and find applications across various engineering domains. Numerous control strategies have been developed to enhance MLS performance. Model predictive control (MPC) is particularly suitable for MLS, as it effectively incorporates state and input constraints while achieving high tracking performance through receding horizon optimization. Although substantial research has focused on MPC design for MLS, these approaches rely on accurate plant models to ensure predictive accuracy and control effectiveness. To address these challenges, this paper presents an orthogonal functions-based MPC for controlling the position of a levitating ferromagnetic ball, a nonlinear and open-loop unstable system. By integrating discrete orthogonal basis functions, the proposed method reformulates the predictive control problem, simplifying the solution process, enhancing tuning flexibility, and enabling an extended control horizon without requiring additional parameters. Simulation results are provided to demonstrate the efficiency of the proposed controller.

КЉУЧНЕ РЕЧИ / KEYWORDS:

magnetic levitation system, model predictive control, orthogonal functions, nonlinear systems

ПРОЈЕКАТ / ACKNOWLEDGEMENT:

This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia [grant number 451-03-66/2024-03/200102].

ЛИТЕРАТУРА / REFERENCES:

  1. Sawada, „Development of magnetically levitated high speed transport system in Japan,“ IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 2230-2235, July 1996, DOI: 10.1109/20.508609.
  2. -W. Lee, K.-C. Kim and J. Lee, „Review of maglev train technologies,“ IEEE Transactions on Magnetics, vol. 42, no. 7, pp. 1917-1925, July 2006, DOI: 10.1109/TMAG.2006.875842.
  3. Liu, Z. Long, and X. Li, Maglev trains, Springer, 2015.
  4. Rohacs, J. Rohacs, „Magnetic levitation assisted aircraft take-off and landing (feasibility study – GABRIEL concept),“ Progress in Aerospace Sciences, vol. 85, pp. 33-50, 2016, ISSN 0376-0421, DOI: 10.1016/j.paerosci.2016.06.001.
  5. Ahmad, U. Amin, „Design, construction and study of small scale vertical axis wind turbine based on a magnetically levitated axial flux permanent magnet generator,“ Renewable Energy, vol. 101, pp. 286-292, 2017, DOI: 10.1016/j.renene.2016.08.027.
  6. A. Howard, C. DellaCorte, M. J. Dube, Magnetic Levitation for Long-Life Space Mechanisms: Technology Assessment and Remaining Challenges, National Aeronautics and Space Administration, Glenn Research Center, Ohio, 2019.
  7. Tan, M. Ma, and R. Cao, „Measuring Vibration and Noise from a Magnetic Levitation Central Air-Conditioner.“ ASTM International. J. Test. Eval., vol. 48(6), pp. 4538–4550, November 2020, DOI: 10.1520/JTE20180592.
  8. Carneiro, M. P. Soares dos Santos, A. Rodrigues, J. A.F. Ferreira, J. A.O. Simões, A. T. Marques, A. L. Kholkin, „Electromagnetic energy harvesting using magnetic levitation architectures: A review,“ Applied Energy, vol. 260, pp. 114191, 2020, DOI: 10.1016/j.apenergy.2019.114191.
  9. Xu, Y. Leng, X. Su, et al., „Nonlinear Dynamics and Performance Enhancement Strategies for the Magnetic Levitating Bistable Electromagnetic Energy Harvester,“ J. Vib. Eng. Technol., vol. 12, pp. 3963–3976, 2024, DOI:10.1007/s42417-023-01099-w.
  10. Xie, R. Gao, D. Tang, P. Zhao, Magnetic Levitation in Mechanical Engineering, in: Zhao, P. (eds) Magnetic Levitation. Springer, Singapore, 2024, pp. 123-143, DOI: 10.1007/978-981-99-8314-8_7.
  11. Bizuneh, H. Mitiku, A. O. Salau, K. Chandran, „Performance analysis of an optimized PID-P controller for the position control of a magnetic levitation system using recent optimization algorithms,“ Measurement: Sensors, vol. 33, 2024, pp. 101228, DOI: 10.1016/j.measen.2024.101228.
  12. Wang, J. Rong and J. Yang, „Adaptive Fixed-Time Position Precision Control for Magnetic Levitation Systems,“ in IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 458-469, Jan. 2023, DOI: 10.1109/TASE.2022.3156943.
  13. Tang, Z. Huang, Y. Zhu, et al., „Neural network compensation control of magnetic levitation ball position based on fuzzy inference,“ Sci Rep vol. 12, 1795, 2022, DOI: 10.1038/s41598-022-05900-w.
  14. Li et al., „Data-Driven Multiobjective Controller Optimization for a Magnetically Levitated Nanopositioning System,“ in IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1961-1970, Aug. 2020, DOI: 10.1109/TMECH.2020.2999401.
  15. B. Milovanović, D. S. Antić, S. S. Nikolić, S. Lj. Perić, M. T. Milojković, M. D. Spasić, „Neural Network Based on Orthogonal Polynomials Applied in Magnetic Levitation System Control,“ Electronics and Electrical Engineering, vol. 23, no. 3, pp. 24–29, Publisher: Kaunas University of Technology, June 2017, DOI: 10.5755/j01.eie.23.3.13167
  16. -A. Bojan-Dragos, R. -E. Precup, S. Preitl, S. Hergane, E. G. Hughiet and A. -I. Szedlak-Stinean, „Proportional-integral gain-scheduling control of a magnetic levitation system,“ 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2016, pp. 1-6, DOI: 10.1109/ICSTCC.2016.7790631.
  17. Wang, L. Chen and Q. Xu, „Disturbance Estimation-Based Robust Model Predictive Position Tracking Control for Magnetic Levitation System,“ in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 81-92, Feb. 2022, doi: 10.1109/TMECH.2021.3058256.
  18. Ulbig, S. Olaru, D. Dumur and P. Boucher, „Explicit nonlinear predictive control for a magnetic levitation system, “ Asian Journal of Control, vol. 12, pp. 434-442, Mar. 2010.
  19. Bächle, S. Hentzelt and K. Graichen, „Nonlinear model predictive control of a magnetic levitation system, “ Control Engineering Practice, vol. 21, no. 9, pp. 1250-1258, Sep. 2013.
  20. Klaučo, M. Kalúz and M. Kvasnica, „Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system,“ Control Engineering Practice, vol. 60, pp. 99-105, Mar. 2017.
  21. Wang, Model predictive control system design and implementation using MATLAB, London: Springer London, 2009. DOI: 10.1007/978-1-84882-331-0.