10th International Scientific Conference Technics, Informatics and Education – TIE 2024, str. 140-143
АУТОР(И) / AUTHOR(S): Miroslav Maksimović , Marija Najdanović , Eugen Ljajko , Nataša Kontrec
DOI: 10.46793/TIE24.140M
САЖЕТАК /ABSTRACT:
Information and Communication Technologies (ICTs) usage is of great importance in development of mathematics in general and geometry in particular. Software packages can, for instance, be helpful in differentiation and integration, as well as for solving complex numerical problems, which can be time-consuming if done without ICTs. Instruction of geometrical content at any level often requires usage of the content’s graphic representation. For that purpose, software packages for geometrical content visualization are used. Here we present an example where the computer usage in geometrical content exploration is shown. Visualization is especially important in the infinitesimal bending theory. In the paper we examine infinitesimal bending of a curve on the hyperbolic paraboloid and determine the infinitesimal bending field that leaves the bent curves on it. Since two such fields are obtained, we use Mathematica software package for representation of the curve and observe the impact both fields have on it. We also determine the bending field that leaves the curve on the hyperbolic paraboloid with a given precision
КЉУЧНЕ РЕЧИ / KEYWORDS:
infinitesimal bending; hyperbolic paraboloid; visualization; geometry education; Mathematica
ПРОЈЕКАТ / ACKNOWLEDGEMENTS:
This research was supported by the research by project no. 451-03-65/2024-03/200123 of the Ministry of Education, Science and Technological Development of the Republic of Serbia and by internal-junior project IJ-2303 of Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica.
ЛИТЕРАТУРА / REFERENCES:
- Aleksandrov, A. D. (1936). O beskonechno malyh izibaniyah neregulyarnyh poverhnostei. Sbornik, 1(43), 3, 307-321.
- Efimov, N. (1948). Kachestvennye voprosy teorii deformacii poverhnostei. UMN2 47-158.
- Gray, A., Abbena, E., Salamon, S. (2006). Modern differential geometry of curves and surfaces with Mathematica. 3rd ed., Chapman and Hall CRC.
- Najdanović, M., Rančić, S., Kauffman, L., Velimirović, Lj. (2019). The total curvature of knots under second-order infinitesimal bending. Knot Theo. Ramifications, 28(1), 1950005.
- Najdanović, M., Velimirović, Lj.: Infinitesimal bending of curves on the ruled surfaces. The University Thought – Publication in Natural Sciences, 8(1), 46-51, (2018).
- Najdanović, M., Maksimović, M., Velimirović, Lj. (2021). Curves on ruled surfaces under infinitesimal bending. Bulletin of Natural Sciences Research, 11(1), 38-43.
- Stanimirović, P., Milovanović, G. (2002). Programski paket Mathematica i primene. Elektronski fakultet, Niš.
- Velimirović, Lj. (2001). Change of geometric magnitudes under infinitesimal bending. Facta Univ. 3(11), 135-148,
- Velimirović, Lj. (2009). Infinitesimal bending. Faculty of Sciences and Mathematics, Niš.
- Velimirović, Lj., Cvetković, M., Ćirić M., Velimirović, N. (2012). Analysis of Gaudi surfaces at small deformations. Math. Comput. 218, 6999-7004.
- Velimirović, Lj., Ćirić, M., Cvetković, M. (2010). Change of the Willmore energy under infinitesimal bending of membranes. Math. Appl. 59 (12), 3679-3686.
- Velimirović, Lj., Ćirić, M., Velimirović, N. (2011). On the Willmore energy of shells under infinitesimal deformations. Math. with Appl. 61 (11), 3181-3190.
- Velimirović, Lj., Stanimirović, P., Zlatanović, M. (2010). Geometrija krivih i površi uz korišćenje paketa Mathematica, Prirodno-matematički fakultet, Niš.