Entropy dynamics for a propeller-shaped quantum Brownian molecular rotator

2nd International Conference on Chemo and Bioinformatics ICCBIKG 2023 (82-85)

АУТОР(И) / AUTHOR(S): J. Jeknic-Dugic, I. Petrovic, K. Kojic, M. Arsenijevic, M. Dugic

Е-АДРЕСА / E-MAIL: jjeknic@pmf.ni.ac.rs

Download Full Pdf   

DOI: 10.46793/ICCBI23.082JD

САЖЕТАК / ABSTRACT:

We investigate and analyze the time dependence of the so-called differential entropy as a measure of the dynamical stability of a one-dimensional, propeller-shaped quantum Brownian molecular rotator. The larger the entropy change, the more profound the instability (lower control) of the rotator. The quantum molecular rotator is modelled by the quantum Caldeira-Leggett master equation while assuming the external harmonic field for the rotator. Rotational stability is found relatively high for the constructed Gaussian states, especially for molecules with a larger number of blades.

КЉУЧНЕ РЕЧИ / KEYWORDS:

molecular cogwheels, entropy, open quantum systems, Brownian motion

ЛИТЕРАТУРА / REFERENCES:

  • R. A. L. Jones, Soft machines, Nanotechnology, and Life, Oxford University Press, Oxford, 2004.
  • M. Kurzinski, The thermodynamic machinery of life, Springer, Berlin, 2006.
  • G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Artificial molecular rotors, Chemical Reviews, 105 (2005) 1281-1376.
  • Nanoscience and Technology: A Collection of Reviews from Nature Journals, Ed., Peter Rogers, World Scientific, Singapore, 2009.
    T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst, and B. L. Feringa, Electrically driven directional motion of a four-wheeled molecule on a metal surface, Nature, 479 (2011) 208-211.
  • H.-P. Breuer, and F. Petruccione, The theory of open quantum systems, Clarendon Press, Oxford, 2002.
  • A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V. Scarani, Autonomous rotor heat engine, Physical Review E, 95 (2017) 062131.
  • J. Jeknic-Dugic, I. Petrovic, M. Arsenijevic, and M. Dugic, Dynamical stability of the one-dimensional rigid Brownian rotator: The role of the rotator’s spatial size and shape, Journal of Physics: Condensed Matter, 30 (2018) 195304.
  • B. A. Stickler, B. Schrinski, and K. Hornberger, Rotational friction and diffusion of quantum rotors, Physical Review Letters, 121 (2018) 040401.
  • D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, and N. Giuseppone, Design of collective motions from synthetic molecular switches, rotors, and motors, Chemical Reviews, 120 (2019) 310-433.
  • I. Petrovic, J. Jeknic-Dugic, M. Arsenijevic, and M. Dugic, Dynamical stability of the weakly nonharmonic propeller-shaped planar Brownian rotator, Physical Review E, 101 (2020) 012105.
  • C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R. Quidant, and O. Romero-Isart, Levitodynamics: Levitation and control of microscopic objects in vacuum, Science, 374 (2021) eabg3027.
  • B. Schrinski, Y. J. Chan, B. Schrinski, Thermalization of the Quantum Planar Rotor with external potential, E-print arXiv:2207.04810 [quant-ph].
  • M. A. Nielsen, and I. L. Chuang, Quantum computation and Quantum information, Cambridge University Press, Cambridge, 2000.
  • A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian
  • motion, Physica A, 46 (1983) 587-616.
    P. Garbaczewski, Differential Entropy and Dynamics of Uncertainty, Journal of Statistical Physics, 123 (2006) 315-355.
  • J. Jeknic-Dugic, K. Kojic, I. Petrovic, M. Arsenijevic, M. Dugic, Entropy production for a harmonic propeller-shaped planar molecular quantum Brownian rotator (work in progress).