Integracija toplotnih pumpi u postojeći energetski sistem u malim i srednjim preduzećima / Integration of a Heat Pump into the Existing Energy System in SMEs

Energija, ekonomija, ekologija, 3, XXIV, 2022, (str. 32-38)

АУТОР(И): Dubravka Živković, Davor Končalović, Vladimir Vukašinović, Mladen Josijević, Dušan Gordić

Е-АДРЕСА:  dubravka@uni.kg.ac.rs

Download Full Pdf   

DOI: 10.46793/EEE22-3.32Z

САЖЕТАК:

Industry processes are characterized by large amounts of energy losses dissipated as waste heat to the ambient. In industry sectors analysed in the US, China and EU28 low- temperature waste heat below 230ºC makes up from 33% up to 60% of waste heat. The recovery of low-temperature waste heat is usually complex, affected by the user demand, mismatches between the waste heat source and the user demand, limited space for heat recovery facilities, the heat-power conversion is not efficient for low-temperature waste heat, payback period, etc. The purpose of this paper is to present a methodology for technical and economic analysis of waste heat recovery. To address the issue of sensible criterion, methodology appropriate for small and medium enterprises is developed and in this paper, the user-friendly optimization integrating the heat exchange, energy conversion and heat storage is presented. A case study of waste heat recovery from an induction machine cooling system is used to demonstrate the applicability of the proposed methodology. The introduced methodology can simplify the heat pump integration process, and the proposed method can be further extended to other industrial processes for low-grade waste heat recovery.

КЉУЧНЕ РЕЧИ:

Waste heat recovery, Heat pump, Industry

ЛИТЕРАТУРА:

  • Seth, D, Rehman, M.A.A, Shrivastava, RL. Green manufacturing drivers and their relationships for small and medium(SME) and large industries, Journal of Cleaner Production, Vol. 198, pp. 1381-1405, 2018. https://doi.org/10.1016/j.jclepro.2018.07.106
  • Agathokleous, R., Bianchi, G., Panayiotou, G., Arestia, L., Argyrou, M.C,, Georgiou, G.S, et al. Waste heat recovery in the EU industry and proposed new technologies, Energy Procedia, Vol. 161, pp.489–496, 2019. https://doi.org/10.1016/j.egypro.2019.02.064
  • Luo, A., Fang, H., Xia, J., Lin, B., Jiang, Y. Mapping potentials of low-grade industrial waste heat in Northern China, Resources Conservation Recycling, 125, pp. 335-348, 2017. https://doi.org/10.1016/j.resconrec.2017.06.018  
  • Kljajić, M.V., Andjelković, A.S., Gvozdenac, D.D. Viability analysis of heat recovery solution for the industrial process of roasting coffee, Thermal Science, Vol. 20, No. Suppl. 2, pp. S623-S637, 2016. https://doi.org/10.2298/TSCI151013044K
  • Sztekler, K., Kalawa, W., Stefanski, S., Krzywanski, J., Grabowska, K., Sosnowski, M. Using adsorption chillers for utilising waste heat from power plants, Thermal Science, Vol. 23, No. 4, pp. 1143-1151, 2019. https://doi.org/10.2298/TSCI19S4143S
  • Meijer, L., Huijben, J., van Boxstael, A, Romme, A. Barriers and drivers for technology commercialization by SMEs in the Dutch sustainable energy sector, Renewable and Sustainable Energy Reviwev., Vol. 112, pp. 114-126, 2019. https://doi.org/10.1016/j.rser.2019.05.050
  • Paunović, M.. Radonjić, A. Značaj energetskog menadžmenta za poslovanje kompanija, Energija, Ekonomija, Ekologija, Vol. 20, No. 1-2, pp. 465-470, 2018.
  • Suslov, B., Bulajić, M. Program energetske efikasnosti HIP-Petrohemija Pančevo, Energija, Ekonomija, Ekologija, Vol. 23, No. 1, pp. 56-60, 2021. https://doi.org/10.46793/EEE21-1.56S
  • Ilić, S., Stevanović, M., Branković, B. Investicije u funkciji energetskog menadžmenta, Energija, Ekonomija, Ekologija, Vol. 19, No. 1-2, pp. 244-250, 2017.
  • Ilić, S., Đorđević, B., Pavlović, R. Značaj konsaltinga u oblasti energetskog menadžmenta, Energija, Ekonomija, Ekologija, Vol. 19, No. 1-2, pp. 251–257, 2017.
  • Zhang, X., Bai, H., Zhao, X., Diabat, A., Zhang, J., Yuan, H., et al. Multi-objective optimisation and fast decision-making method for working fluid selection in organic Rankine cycle with low-temperature waste heat source in industry, Energy Conversion Management, Vol. 172, pp. 200-211, 2018. https://doi.org/10.1016/J.ENCONMAN.2018.07.021
  • Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., Tassou, S.A. Waste heat recovery technologies and applications, Thermal Science and Engineering Progress, Vol. 6, pp. 268-289, 2018. https://doi.org/10.1016/j.tsep.2018.04.017
  • Kosmadakis, G. Estimating the potential of industrial (high-temperature) heat pumps for exploiting waste heat in EU industries, Applied Thermal Engineering, Vol. 156, pp. 287-298, 2019. https://doi.org/10.1016/j.applthermaleng.2019.04.082
  • Wang, X., Tian, H., Yan, F., Feng, W., Wang, R., Pan, J. Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality, Applied Thermal Engineering, Vol. 181, pp. 115975, 2020. https://doi.org/10.1016/j.applthermaleng.2020.115975
  • Men, Y., Liu, X., Zhang, T. A review of boiler waste heat recovery technologies in the medium-low temperature range, Energy, Vol. 237, pp. 121560, 2021. https://doi.org/10.1016/j.energy.2021.121560
  • Li, B., Wang, S., Wang, K., Song, L. Thermo-economic analysis of a combined cooling, heating and power system based on carbon dioxide power cycle and absorption chiller for waste heat recovery of gas turbine, Energy Conversion Management, Vol. 224, pp. 113372, 2020. https://doi.org/10.1016/j.enconman.2020.113372
  • Zarzycki, R., Panowski, M. Increase of Thermal Efficiency of Cogeneration Plant By Waste Heat Utilisation With Absorption Heat Pump, Thermal Science, Vol. 23, No. Supp. 4, pp. S1101-S1112, 2019. https://doi.org/10.2298/TSCI19S4101Z
  • Cui, P., Yu, M., Liu, Z., Zhu, Z., Yang, S. Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery, Energy Conversion Management, Vol. 184, pp. 249-261, 2019. https://doi.org/10.1016/j.enconman.2019.01.047
  • Xu, Z.Y., Wang, R.Z, Yang, C. Perspectives for low-temperature waste heat recovery, Energy, Vol. 176, pp. 1037-1043, 2019. https://doi.org/10.1016/J.ENERGY.2019.04.001
  • Zheng, H.F., Tian, G.J., Niu, Q.P., Ma, Y.Q., Li, Z.Q., Liu, E.H. Application of industrial waste heat in solar refrigerant system an example of a textile factory in Jinjiang, Thermal Science, Vol. 23, pp. 2495-2500, 2019. https://doi.org/10.2298/TSCI1904495Z
  • Menghi, R., Domizio, G. Di., Papetti, A., Germani, M., Marconi, M. An energy assessment method for SMEs: Case study of an Italian mechanical workshop, Procedia Manufacturing, Vol. 43, pp. 56-63, 2020. https://doi.org/10.1016/j.promfg.2020.02.107
  • Wang M, Deng C, Wang Y, Feng X. Exergoeconomic performance comparison, selection and integration of industrial heat pumps for low grade waste heat recovery, Energy Conversion Management, Vol. 207, 112532, 2020. https://doi.org/10.1016/j.enconman.2020.112532
  • Ivezić, D., Živković, M., Madžarević, A., Pavlović, B. Mogućnost korišćenјa toplotnih pumpi sa otpadnom toplotom iz postrojenјa za prečišćavanјe otpadnih voda kao toplotnim izvorom. Energija, Ekonomija, Ekologija, Vol. 23, No. 1, pp. 11-15, 2021. https://doi.org/10.46793/EEE21-1.11I