Vertikalne fasade solitera kao lokacije za instalaciju fotonaponskih panela / Vertical Facades of the High-Rise Buildings as Locations for the Photovoltaic Panels Installation

Energija, ekonomija, ekologija, 2, XXIV, 2022, (str. 6-12)

AUTOR(I): Andreja Stefanović

E-ADRESA: andreja2202@gmail.com

Download Full Pdf   

DOI: 10.46793/EEE22-2.06S

SAŽETAK:

Fasade solitera predstavljaju alternativnu lokaciju za instalaciju fotonaponskih panela, koji se najčešće postavljaju na krovove objekata. Specifičan prostorni oblik solitera, sa relativno malom površinom osnove u odnosu na visinu objekata, pruža mogućnost iskorišćenja vertikalnih fasada ovih objekata, koje su često u lošem stanju. Fotonaponski paneli postavljeni na ovakvim lokacijama, osim generisanja električne energije, mogu imati estetski i urbanistički uticaj na gradski prostor. U ovom radu je izvršena simulacija generacije električne energije iz fotonaponskih panela, lociranih na vertikalnim fasadama solitera grada Kragujevca, korišćenjem softvera EnergyPlus. Sprovedena je analiza dobijenih rezultata za realne prostorne orijentacije fasada, pri čemu je modelirano i okruženje solitera koje stvara osenčenje fasada, kao što su okolni objekti i visoko drveće. Dobijene godišnje vrednosti generisane električne energije su upoređene sa energijom koje se troši za grejanje ovih građevinskih objekata.

KLJUČNE REČI:

soliter, fotonaponski paneli, simulacija, EnergyPlus

LITERATURA:

[1]   Stefanovic, A., Gordic, D. Modeling methodology of the heating energy consumption and the potential reductions due to thermal improvements of staggered block buildings, Energy and Buildings, Vol. 125, pp. 244-253, 2016. https://doi.org/10.1016/j.enbuild.2016.04.058

[2]   Alves, T., Machado, L., de Souza, R. D., de Wilde, P. Assessing the energy saving potential of an existing high-rise office building stock, Energy and Buildings, Vol. 173, pp. 547-561, 2018. https://doi.org/10.1016/j.enbuild.2018.05.044

[3]   Freitas, S., Brito, M. C. Solar façades for future cities, Renewable Energy Focus, Vol. 31, pp. 73-79, 2019. https://doi.org/10.1016/j.ref.2019.09.002

[4]   Wang, Y., Mauree, D., Sun, Q., Lin, H., Scartezzini, J. L., Wennersten, R. A review of approaches to low-carbon transition of high-rise residential buildings in China, Renewable and Sustainable Energy Reviews, Vol. 131, 109990, 2020. https://doi.org/10.1016/j.rser.2020.109990

[5]   Giouri, E. D., Tenpierik, M., Turrin, M. Zero energy potential of a high-rise office building in a Mediterranean climate: Using multi-objective optimization to understand the impact of design decisions towards zero-energy high-rise buildings, Energy and Buildings, Vol. 209, 109666, 2020. https://doi.org/10.1016/j.enbuild.2019.109666

[6]   Weerasuriya, A. U., Zhang, X., Gan, V. J. L., Tan, Y. A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings, Building and Environment, Vol. 153, pp. 218-232, 2019. https://doi.org/10.1016/j.buildenv.2019.02.027

[7]   Qin, H., Pan, W. Energy use of subtropical high-rise public residential buildings and impacts of energy saving measures, Journal of Cleaner Production, Vol. 254, 120041, 2020. https://doi.org/10.1016/j.jclepro.2020.120041

[8]   Gan, V. J. L., Wong, H. K., Tse, K. T., Cheng, J. C. P., Lo, I. M. C., Chan, C. M. Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings, Journal of Cleaner Production, Vol. 231, pp. 1375-1388, 2019. https://doi.org/10.1016/j.jclepro.2019.05.324

[9]   Jang, H., Kang, J. An energy model of high-rise apartment buildings integrating variation in energy consumption between individual units, Energy and Buildings, Vol. 158, pp. 656-667, 2018. https://doi.org/10.1016/j.enbuild.2017.10.047

[10] Lotfabadi, P. Analyzing passive solar strategies in the case of high-rise building, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1340-1353, 2015. https://doi.org/10.1016/j.rser.2015.07.189

[11] Lotfabadi, P. Solar considerations in high-rise buildings, Energy and Buildings, Vol. 89, pp. 183-195, 2015. https://doi.org/10.1016/j.enbuild.2014.12.044

[12] Chen, X., Yang, H., Peng, J. Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context, Energy, Vol. 172 pp. 1-17, 2019. https://doi.org/10.1016/j.energy.2019.01.112

[13] Kosorić, V., Lau, S., Tablada, A., Lau, S. S. General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits, Renewable and Sustainable Energy Reviews, Vol. 91, pp. 70-89, 2018. https://doi.org/10.1016/j.rser.2018.03.087

[14] Ghazali, A., Salleh, E. I., Haw, L. C., Mat, S., Sopian, K. Performance and Financial Evaluation of Various Photovoltaic Vertical Facades on High-rise Building in Malaysia, Energy and Buildings, Vol. 134, pp. 306-318, 2017. https://doi.org/10.1016/j.enbuild.2016.11.003

[15] Saretta, E., Bonomo, P., Frontini, F. A calculation method for the BIPV potential of Swiss facades at LOD2.5 in urban areas: A case from the Ticino region, Solar energy, Vol. 195, pp. 150–165, 2020. https://doi.org/10.1016/j.solener.2019.11.062

[16] Lazović, Đ., Džodić, K., Đurišić, Ž., Analiza ekonomske opravdanosti investiranja u solarnu elektranu sa vertikalno postavljenim bifacijalnim fotonaponskim maodulima u perspektivnim uslovima slobodnog tržišta, Energija, ekonomija, ekologija, Vol.. XXIII, No. 3, pp. 37-44, 2021. https://doi.org/10.46793/EEE21-3.37L

[17] Brito, M. C., Freitas, S., Guimarães, S., Catita, C., Redweik, P. The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data, Renewable Energy, Vol. 111, pp. 85-94, 2017. https://doi.org/10.1016/j.renene.2017.03.085

[18] Suomalainen, K., Wang, V., Sharp, B. Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level, Renewable Energy, Vol. 111, pp. 463-475, 2017. https://doi.org/10.1016/j.renene.2017.04.025

[19] Martínez-Rubio, A., Sanz-Adan, F., Santamaría-Peña, J., Martínez, A. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology, Applied Energy, Vol. 183, pp. 133–147, 2016. https://doi.org/10.1016/j.apenergy.2016.08.163

[20] Zhong, Q., Tong, D. Spatial layout optimization for solar photovoltaic (PV) panel installation, Renewable Energy, Vol. 150, pp. 1-11, 2020. https://doi.org/10.1016/j.renene.2019.12.099

[21] Mishra, T., Rabha, A., Kumar, U., Arunachalam, K., Sridhar, V. Assessment of solar power potential in a hill state of India using remote sensing and Geographic Information System, Remote Sensing Applications: Society and Environment, Vol. 19, 100370, 2020. https://doi.org/10.1016/j.rsase.2020.100370

[22] Jovanović Popović, M., Ignjatović, D., Radivojević, A., Rajčić, A., Đukanović Lj., Ćuković N., Nedić M. Atlas višeporodičnih zgrada Srbije, Univerzitet u Beogradu, Arhitektonski fakultet, Beograd, 2013.

[23] Henninger, R., Witte, M., Crawley, D. Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100-E200 test suite, Energy and Buildings, Vol. 36, pp. 855-863, 2004. https://doi.org/10.1016/j.enbuild.2004.01.025

[24] US DOE, EnergyPlus: Testing and Validation, https://energyplus.net/testing [pristupljeno 02.01.2022.]

[25] Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs, Building and Environment, Vol. 43, pp. 661-673, 2008. https://doi.org/10.1016/j.buildenv.2006.10.027

[26] Yadav, S., Hachem-Vermette, C., Panda, S. K., Tiwari, G.N., Mohapatra, S.S. Determination of optimum tilt and azimuth angle of BiSPVT system along with its performance due to shadow of adjacent buildings, Solar Energy, Vol. 215, pp. 206-219, 2021. https://doi.org/10.1016/j.solener.2020.12.033

[27] Mukisa, N., Zamora, R. Optimal tilt angle for solar photovoltaic modules on pitched rooftops: A case of low latitude equatorial region, Sustainable Energy Technologies and Assessments, Vol. 50, 101821, 2022.

https://doi.org/10.1016/j.seta.2021.101821

[28] Krstić, N., Klimenta, D., Tasić, D., Radosavljević, D., Određivanje optimalnih nagibnih uglova fotonaponskih panela uz uvažavanje smanjenja direktne komponente iradijacije usled efekata senki u fotonaponskim sistemima, Energija, ekonomija, ekologija, Vol. 23, No. 3, pp. 45-53, 2021. https://doi.org/10.46793/EEE21-3.45K

[29] Meteonorm Software, https://meteonorm.com/en/ [pristupljeno 02.01.2022.]

[30] Kyocera KD 300-80 F Series, https://www.ervsolar.com/shared/pdf/Kyocer a/KD320GX-LFB.pdf [pristupljeno 02.01.2022.]‌

[31] Input Output Reference, https://bigladdersoftware.com/epx/docs/9-6/input-output-reference/overview.html#input-output-reference [pristupljeno 02.01.2022.]

[32] Stefanović, A., Optimizacija potrošnje energije za grejanje višeporodičnog stambenog građevinskog fonda grada korišćenjem energetskog modela, Fakultet inženjerskih nauka, Kragujevac, 2016.