In silico study on the apicoplast L4 ribosomal protein and three domains from 23S rRNA from „Plasmodium falciparum“ and comparison with the existing cocrystal structures

Chemia Naissensis Volume 2, No.2 (2019) (стр. 50-65) 

АУТОР(И) / AUTHOR(S): Biljana Arsic, Jill Barber

Е-АДРЕСА / E-MAIL: ba432@ymail.com

Download Full Pdf   

DOI: 10.46793/ChemN2.2.050A

САЖЕТАК / ABSTRACT:

We performed preliminary computational studies on the construction of a segment of ribosomal protein L4 from the apicoplast ribosome of Plasmodium falciparum. With a Z-score of -3.404, it is arguably the best constructed model of this drug target so far. Three domains from 23S rRNA were made from scratch using the software RNA2D3D: domain II, IV and V. They were not validated but show reasonable similarity with bacterial 23S rRNA. This model has technical limitations but is a starting point; refined models are expected to find use in antimalarial drug design.

КЉУЧНЕ РЕЧИ / KEYWORDS:

in sillico, Plasmodium falciparum, ribosome

ЛИТЕРАТУРА / REFERENCES:

  • Arnold, K., Bordoli, L., Kopp, J., &Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22,195-201.
  • Arsic, B., Awan, A., Brennan, R., Aguilar, J., Ledder, R., McBain, A. J., Regan, A. C., & Barber, J. (2014). Theoretical and experimental investigation on clarithromycin, erythromycin A and azithromycin and descladinosyl derivatives of clarithromycin and azithromycin with 3-O– substitution as anti-bacterial agents. MedChemComm, 5(9), 1347-1354.
  • Clastre, M., Goubard, A., Prel, A., Mincheva, Z., Viaud-Massuart, M.-C., Bout, D., Rideau, M., Velge-Roussel, F., &Laurent, F. (2007). The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: Presence and sensitivity to fosmidomycin. Experimental Parasitology, 116, 375-384.
  • Clough, B., Rangachari, K., Strath, M., Preiser, P. R., & Wilson, R. (1999). Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist, 150, 189-195.
  • Dahl, E. L., & Rosenthal, P. J. (2007). Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrobial Agents and Chemotherapy, 51, 3485-3490.
  • Gleeson, M. T. (2000). The plastid in Apicomplexa: what use is it?International Journal of Parasitology, 30, 1053-1070.
  • Gozalbes, R., Brun-Pascaud, M., Garcia-Domenech, R., Galvez, J., Girard, P.-M., Doucet, J.-P., & Derouin, F. (2000). Anti-Toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual computational techniques. Antimicrobial Agents and Chemotherapy, 44, 2771-2776.
  • Harms, J. M., Wilson, D. N., Schluenzen, F., Connell, S. R., Stachelhaus, T., Zaborowska, Z., Spahn, C. M. T, &Fucini P. (2008). Translational regulation via L11: Molecular switches on the ribosome turned on and off by Thiostrepton and Micrococcin. Molecular Cell, 30, 26-38.
  • Hooft, R. W., Sander, C., &Vriend, G. (1997). Objectively judging the quality of a protein structure from a Ramachandran plot. Computer Applications in the Biosciences, 13, 425-430.
  • http://www-lmmb.ncifcrf.gov/~bshapiro/software.html, accessed 19/11/2018
  • https://pymol.org/2/, accessed 19/11/2018
  • https://www.who.int/malaria/en/, accessed 24/09/2019
  • Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H. K., Soldati, D., & Beck, E. (1999). Inhibitors of the nonmevalonatepathway of isoprenoid biosynthesis as antimalarial drugs. Science, 285, 1573- 1576.
  • McConkey, G.A., Rogers, M. J., &McCutchan, T. F. (1997). Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. The Journal of Biological Chemistry, 272, 2046-2049.
  • McConkey,G. A., Rogers, M. J., &McCutchan, T. F. (1997). Inhibition of Plasmodium falciparum protein synthesis. The Journal of Biological Chemistry, 272, 2046-2049.
  • Mitra, K.,Schaffitzel, C., Fabiola, F., Chapman, M. S., Ban, N., & Frank, J. (2006). Elongation arrest by SecMvia a cascade of ribosomal RNA rearrangements. Molecular Cell, 22, 533-543.
  • Moorthy, V. S., &Okwo-Bele, J-M. (2015). Final results from a pivotal phase 3 malaria vaccine trial. Lancet, 386, 5-7.
  • Pfefferkorn, E. R., &Borotz, S. E. (1994). Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrobial Agents and Chemotherapy, 338, 31-37.
  • Pukrittayakamee, S., Viravan, C., Charoenlarp, P., Yeamput, C., Wilson, R. J. M., & White, N. J. (1994). Antimalarial effects of Rifampin in Plasmodium vivaxmalaria. Antimicrobial Agents and Chemotherapy, 38, 511-514.
  • Ralph, S. A., D’Ombrain, M. C., & McFadden, G. I. (2001). The apicoplast as an antimalarial drug target.Drug Resistance Update, 4, 145-151.
  • Roberts, F., Roberts, C. W., Johnson, J. J., Kyle, D. E., Krell, T., Coggins, J. R., Coombs, G. H., Milhous, W. K., Tzipori, S., Ferguson, D. J. P., Chakrabarti, D., &McLeod, R. (1998). Evidence for the shikimate pathway in apicomplexan parasites. Nature, 393, 801-805.
  • Rogers, M. J., Cundliffe, E., &McCutchan, T. F. (1998). The antibiotic Micrococcinis a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrobial Agents and Chemotherapy, 42, 715-716.
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725-738.
  • Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2011). A protocol for computer-based protein structure and function prediction. Journal of Visualized Experiments, 57, e3259.
  • RTS,S Clinical Trials Partnership. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomized, controlled trial. The Lancet, 386 (9988), 31-45.
  • Schlunzen, F., Harms J. M., Franceschi, F., Hansen, H. A. S., Bartels, H., Zarivach, R., &Yonath, A. (2003). Structural basis for the antibiotic activity of ketolides and azalides. Structure, 11, 329-338.
  • Sidhu, A. B. S., Sun, Q., Nkrumah, L. J., Dunne, M. W., Sacchettini, J. C., & Fidock, D. A. (2007). In vitro efficacy, resistance selection, and structural modelling studies implicate the malarial parasite apicoplast as the target of azithromycin. The Journal of Biological Chemistry, 282, 2494-2504.
  • Surolia, N., & Surolia, A. (2001). Triclosan offers protection against blood stages of malaria byinhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Medicine, 7, 167-173.
  • Uddin, T., McFadden, G.I., & Goodman, C.D. (2018). Validation of putative apicoplast-targeting drugs using a chemical supplementation assay in cultured human malaria parasites. Antimicrobial Agents and Chemotherapy, 62 (1), e01161-17.