„Sambucus nigra“ and „Sambucus racemosa“ fruit: a schematic review on chemical characterization

Chemia Naissensis Volume 2, No.2 (2019) (стр. 1-29) 

АУТОР(И) / AUTHOR(S): Vojkan Miljković

Е-АДРЕСА / E-MAIL: vojkanmm_serbia@yahoo.com

Download Full Pdf   

DOI: 10.46793/ChemN2.2.001M


Elderberry is a plant which parts are used for healing purposes. It is rich in polyphenolic compounds (anthocyanins, flavonols, phenolic acids, proanthocyanidins). Black elderberry is the most characterized of all elderberry types. In this paper, the emphasis is on published results about the fruit of black elderberry (Sambucus nigra) and red elderberry (Sambucus racemosa), as well as different cultivars within these species. The first step in chemical analysis of a plant material is the extraction. It is important to choose the appropriate extraction technique and solvent(s) for the extraction. Spectrophotometric methods enable the determination of total phenol content, total monomeric anthocyanin content, antioxidant activity (ABTS ˙ +, DPPH˙, TEAC, β-carotene / linoleic acid assays). High performance liquid chromatography technique combined with appropriate detectors (for carbohydrates and organic acids: HPLC-PDA; for individual phenolic compounds: HPLC-DAD-MS, HPLC-DAD-ESI-MS-MS; for individual anthocyanins: HPLC-DAD–, HPLC-MS-MS, HPLC-UV-MS-MS, HPLC-DAD-ESI-MS,

HPLC-DAD-ESI-MS-MS; for proanthocyanins: HPLC-ESI-MS-MS) provides the results about chemical composition, which were determined. Differences in chemical composition are evident between black and red elderberry, and less within different cultivars of the same species. Values for the total anthocyanin content obtained by using the HPLC method are two or more times higher than those obtained spectrophotometrically. The same can be said for the results for phenolic compounds. Elderberry fruit should be more commercialized since the chemical composition makes it a source of a cosmetically active substances.


elderberry, chemical composition, Sambucus nigra, Sambucus racemosa


  • Akbulut, M., Ercisli, S., & Tosun, M. (2009). Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.) genotypes. Pharmacognosy Magazine, 5, 20, 320–323.
  • Anton, A. M., Pintea, A. M., Rugina, D. O., Sconta, Z. M., Hanganu, D., Vlase, L., & Benedec, D. (2013). Preliminary studies on the chemical characterization and antioxidant capacity of polyphenols from Sambucus sp. Digest Journal of Nanomaterials and Biostructures, 8, 3, 973– 980.
  • ASE, 200 Accelerated Solvent Extractor Operator’s Manual. (1995). Document No. 031149, Revision 01, Dionex, Sunnyvale, CA, Sect. 3–5.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117, 426– 436.
  • Badarinath, A. V., Mallikarjuna Rao, K., Madhu Sudhana Chetty, C., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A review on in-vitro antioxidant methods: Comparisons, correlations and considerations. International Journal of PharmTech Research, 2, 2, 1276–1285.
  • Bermudez-Soto, M. J., & Thomas-Barberan, F. A. (2004). Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. European Food Research and Technology, 219, 133-141.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel – Wissenschaft und Technologie, 28, 25–30.
  • Cannell, R. J. P. (1998). Natural Products Isolation (pp. 165–208). New Jersey: Human Press Inc.
  • Christensen, L., Kaack, K., & Frette, X. (2008). Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. European Food Research and Technology, 227, 1, 293–305.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12, 4, 564–582.
  • Dawidowicz, A. L., Wianowska, D., & Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). Lwt – Food Science and Technology, 39, 3, 308–315.
  • Duymus, H. G., Göger, F., & Husnu Can Baser, K. (2014). In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chemistry, 155, 112–119.
  • Enviromental Protection Agency, USA. <https://www.epa.gov/greenchemistry/basics-green- chemistry#definition >.
  • Escarpa, A., & Gonzalez, M. C. (2001). Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 427, 119–127.
  • Fan, X. H., Cheng, Y. Y., Ye, Z. L., Lin, R. C., & Qian, Z. Z. (2006). Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Analytica Chimica Acta, 555, 217–224.
  • Giusti, M. M., & Wrolstad, R. E. (2000). Anthocyanins: Characterization and measurement with UV-visible spectroscopy. In R. E. Wrostad (Ed.), Current protocols in food analytical chemistry (pp. 1–13). New York, NY, Unit F1.2: John Wiley & Sons.
  • Gonzalez-Molina, E., Girones-Vilaplana, A., Mena, P., Moreno, D. A., & Garıa-Viguera, C. (2012). New beverages of lemon juice with elderberry and grape concentrates as a source of bioactive compounds. Journal of Food Science, 77, 6, C727–C733.
  • Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., & Prior, R. L. (2004). Concentrations of oligomeric and polymeric of flavan-3-ols (proanthocyanidins) in common and infant foods and estimation of normal consumption. Journal of Nutrition, 134, 613– 617.
  • Haminiuk, C. W. I., Maciel, G. M., Plata-Oviedo, M. S. V., & Peralta, R. M. (2012). Phenolic compounds in fruits—an overview. International Journal of Food Science & Technology, 47, 10, 2023–2044.
  • Hernandez, Y., Lobo, M. G., & Gonzalez, M. (2009). Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chemistry, 114, 2, 734–741.
  • Jakobek, L., & Seruga, M. (2012). Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. International Journal of Food Properties, 15, 1, 122–133.
  • Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. Journal of Agricultural and Food Chemistry, 42, 1, 64–69.
  • Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of the AOAC International, 88, 1269–1278.
  • Lee, J., & Finn, C. E. (2007). Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. Journal of the Science of Food and Agriculture, 87, 2665–2675.
  • Lee, J., Rennaker, C., & Wrolstad, R. E. (2008). Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chemistry, 110, 782–786.
  • Majors, R. E. (1999). An overview of sample preparation methods for solids. LC-GC Europe, 17, 6, 8–13.
  • Manning, W. J. (2005). Pinus cembra, a long term bioindicator for ambient ozone in subalpine regions of the Carpathian Mountains. Polish Botanical Studies, 19, 59–64.
  • Marks, S. C., Mullen, W., & Crozier, A. (2007). Flavonoid and chlorogenic acid profiles of English cider apples. Journal of Science of Food and Agriculture, 87, 719–728.
  • Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Todorovic, B., Veberic, R., Stampar, F., & Ivancic, A. (2014). Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. Journal of Agricultural and Food Chemistry, 62, 24, 5573–5580.
  • Mikulic-Petkovsek, M., Ivancic, A., Todorovic, B., Veberic, R., & Stampar, F. (2015). Fruit phenolic composition of different elderberry species and hybrids. Journal of Food Science, 80, 10, C2180–C2190.
  • Mikulic-Petkovsek, M., Ivancic, A., Schmitzer, V., Veberic, R., & Stampar, F. (2016). Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. Food Chemistry, 200, 134–140.
  • Milivojevic, J., Maksimovic, V., Nikolic, M., Bogdanovic, J., Maletic, R., & Milatovic, D. (2011). Chemical and antioxidant properties of cultivated and wild fragaria and rubus berries. Journal of Food Quality, 34, 1, 1–9.
  • Moure, A., Franco, D., Sineiro, J., Dominguez, H., Nunez, M. J., & Lema, J. M. (2001). Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 34, 103–109.
  • Osorio, C., Hurtado, N., Dawid, C., Hofmann, T., HerediaMira, F. J., & Morales, A. L. (2012). Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chemistry, 132, 4, 1915–1921.
  • Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L. & Duarte, A. R. C. (2014). Natural deep eutectic solvents−solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2, 5, 1063–1071.
  • Paulsen, B. S. (2010). Highlights through the history of plant medicine. In: Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters, Oslo, Norway.
  • Porter, L. J. (1994). Flavans and proanthocyanidins. In J. B. Harbone (Ed.), The flavonoids (pp. 23–53). Chapman and Hall: London, U.K.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9–10), 1231–1237.
  • Robards, K., & Antolovich, M. (1997). Analytical chemistry of fruit bioflavonoids a review. Analyst, 122, 2, 11R–34R.
  • Rutz, J. K., Voss, G. B., & Zambiazi, R. C. (2012). Influence of the degree of maturation on the bioactivecompounds in backberry (Rubus spp.) cv. Tupy. Food and Nutrition Sciences, 03, 10, 1453–1460.
  • Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plant’s extracts. African Journal of Traditional, Complementary and Alternative Medicines: AJTCAM, 8, 1, 1–10.
  • Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M., & Ochi, H. (1996). Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. Journal of Agricultural and Food Chemistry, 44, 1, 37–41.
  • Seeram, N. P. (2006). Berries. In D. Heber, G. Blackburn, G. V. L. W. Go, J. Milner (Eds.), Nutritional Oncology (pp. 615–625), 2nd edition, London: Academic Press.
  • Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50, 8, 2432–2438.
  • Sidor, A., & Gramza-Michalowska, A. (2014). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – A review. Journal of Functional Foods, 18, B, 941–958.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • Smith, R. M. (2003). Before the injection-modern methods of sample preparation for separation techniques. Journal of Chromatography A, 1000, 1–2, 3–27.
  • Tamer, C. E. (2012). A research on raspberry and blackberry marmalades produced from different cultivars. Journal of Food Processing and Preservation, 36, 1, 74–80.
  • Thole, J. M., Kraft, T. F. B., Sueiro, L. A., Kang, Y. –H., Gills, J. J., Cuendet, M., Pezzuto, J. M., Seigler, D. S., & Lila, M. A. A. (2006). A comparative evaluation of the anticancer properties of European and American elderberry fruits. Journal of Medicinal Food, 9, 498−504.
  • Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114, 511–515.
  • Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. Journal of Agriculture and Food Chemistry, 46, 10, 4113–4117.
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8, 3, 303–313.
  • Vlachojannis, J. E., Cameron, M., & Chrubasik, S. (2009). A systematic review on the Sambuci fructus effect and efficacy profiles. Phytotherapy Research, 24, 1–8.
  • Wang, H., Cao, G., & Prior, R. L. (1997). The oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45, 304–309.
  • Wang, S. Y., Zheng, W., & Galletta, G. J. (2002). Cultural system affects fruit quality and antioxidant capacity in strawberries. Journal of Agricultural and Food Chemistry, 50, 6534– 6542.
  • Wang, L., & Bohn, T. (2012). Health-promoting food ingredients and functional food  processing. In J. Bouayed (Ed.), Nutrition, well-being and health (pp. 201–224), Croatia: InTech.
  • Wrolstad, R. E., Durst, R. W., & Lee, J. (2005). Tracking color and pigment changes in anthocyanin products. Trends in Food Science and Technology, 16, 423–428.
  • Wu, X., Gu, L., Prior, R. L., & McKay, S. (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 52, 7846–7856.
  • Zadernowski, R., Naczk, M., & Nesterowicz, J. (2005). Phenolic acid profile in some small berries. Journal of Agricultural and Food Chemistry, 53, 6, 2118–2124.
  • Zhang, T., Zhu, M., Chen, X., & Bi, K. (2010). Simultaneous analysis of seven bioactive compounds in Sambucus chinensis Lindl by HPLC. Analytical Letters, 43, 2525–2533.