Revisiting the Arrhenius Equation in Chemical Kinetics to Analyze Kinetics Data for Photochromic Naphthoxazine-spiro-indolines

Chemia Naissensis Volume 2, No.1 (2019) (стр. 48-75) 

АУТОР(И) / AUTHOR(S): Jonathan Hobley


Download Full Pdf   

DOI: 10.46793/ChemN2.1.048H


In undergraduate courses, kinetics and thermodynamics are often taught as separate modules. It is because equilibrium data from thermodynamics do not enlighten us about the rate of attainment of equilibrium, which is kinetics. It is true that even if a chemical reaction is thermodynamically favorable, it may never happen due to kinetic considerations. However, this separation of kinetics and thermodynamics is unfortunate in some respects. In this work, the link between chemical kinetics and thermodynamics is explored based on them both being defined by a single potential energy diagram. A common misconception caused by undergraduate courses on chemical kinetics is a claim that the Arrhenius equation is deficient because it does not offer a precise meaning for the pre-exponential term A. Undergraduate courses often go on to proffer more sophisticated theories in the form of collision theory CT and transition state theory TST resulting in the Eyring equation. These latter two theories are required in order to formally show that the pre-exponential term contains information on the entropy requirements of the reaction. In this work, it will be shown that by considering the link between thermodynamics and kinetics it can easily be shown that A was already implicitly linked to the product of the entropy of activation of the reaction and the natural frequency of the reaction. This work makes use of previously published and unpublished results on photochromic naphthoxazine-spiro-indolines to compare different theories.


Arrhenius equation, transition state theory, collision theory, naphthoxazine-spiro- indoline, photochromic, chemical kinetics


  • Arrhenius, S. A. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4, 226-248.
  • Atkins, P. W., Paula, J. De. (2006). Atkins’ Physical Chemistry, 8th Ed Oxford University Press, Chapter 24.
  • Boltzmann, L. (1872). Weitere Studien uber das Warmegleichgewicht unter Gasmolekulen. Wiener Berichte, 66, 275-370.
  • Boltzmann, L. (1896). Vorlesungen über Gastheorie, vol. I., J.A. Barth, Leipzig. Boltzmann, L. (1898). Vorlesungen über Gastheorie, vol. II. J.A. Barth, Leipzig.
  • Born, M., Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 20, 457- 484.
  • Condon, E. (1926). A theory of intensity distribution in band systems. Physical Review, 28, 1182-1201. Franck, J. (1926). Elementary processes of photochemical reactions. Transactions of the Faraday Society, 21, 536-542.
  • Hobley, J. (1995). PhD Thesis, Loughborough University, Available on-line
  • Hobley, J., Lear, M. J., Fukumura, H. (2003). Photo-switching spiropyrans and related compounds. In: Photochemistry of organic molecules in isotropic and anisotropic media. Marcel Dekker, Inc, pp. 353-404. ISBN 9780824708832, 9780203014202.
  • Hobley, J., Wilkinson, F. (1996). Photochromism of naphthoxazine-spiro-indolines by direct excitation and following sensitisation by triplet-energy donors. Journal of the Chemical Society, Faraday Transactions, 92, 8, 1323-1330.
  • Laidler, K. J., King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87, 2657-2664.
  • Tamai, N., Masuhara, H. (1992). Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction. Chemical Physics Letters, 191, (1-2), 189-194.
  • Trautz, M. (1916). Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv‐ 3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser. Zeitschrift für anorganische und allgemeine Chemie, 96, 1-28.
  • Van’t Hoff, J. H. (1887). Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Zeitschrift für Physikalische Chemie, 1, 481-508.
  • Wilkinson, F., Hobley, J., M. Naftaly, M. (1992). Photochromism of spiro-naphthoxazines : molar absorption coefficients and quantum efficiencies. Journal of the Chemical Society, Faraday Transactions, 88, 1511-1517. Wilkinson, F., Worrall, D. R., Hobley, J., Jansen, L., Williams, S. L., Langley, A. J., Matousek, P. (1996). Picosecond time-resolved spectroscopy of the photocolouration reaction of photochromic naphthoxazine-spiro- indolines. Journal of Chemical Society, Faraday Transactions, 92, 1331-1336.