POTENCIJAL RIZOSFERE SOČIVICE (LEMNA MINOR L.) ZA PRODUKCIJU AUKSINA BAKTERIJSKOG POREKLA

Savetovanje o biotehnologiji sa međunarodnim učešćem (Čačak: 27; 2022) (str. 401-406)

AUTOR(I): Olga Radulović, Tatjana Popržen, Marija Marković

E-ADRESA: olga.radulovic@ibiss.bg.ac.rs

Download Full Pdf   

DOI: 10.46793/SBT27.401R

SAŽETAK:

Cilj ovog rada je bila analiza rizosfere sočivice kao mesta aktivne produkcije auksina bakterijskog porekla, primarno indol-3-acetatne kiseline (IAA). Produkcija IAA je testirana na 21 različitom bakterijskom soju. Četiri bakterijska soja: Pseudomonas oryzihabitans 15, Pseudomonas putida 23, Hafnia paralvei 43 i Pseudomonas yamanorum 47 odabrana su na osnovu povećane produkcije IAA u odnosu na ostale testirane sojeve. Ovi sojevi su pokazali neprekinutu produkciju IAA i pod nepovoljnim uslovima: u kiseloj i baznoj sredini, kao i u hipersalinoj sredini. Naši rezultati sugerišu da ovi sojevi mogu imati biotehnološku primenu u zaštiti biljaka i povećanju prinosa putem produkcije auksina kao centralnih regulatora rasta i razvića biljaka.

KLJUČNE REČI:

auksini, indol-3-acetatna kiselina, bakterije, sočivica, stres

LITERATURA:

  • Acosta K., Appenroth K.J., Borisjuk L., Edelman M., Heinig U., Jansen M.A.K., Oyama T., Pasaribu B., Schubert I., Sorrels S., Sree K.S., Xu S., Michael T.P., Lam E. (2021). Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. The Plant Cell, 33(10), 3207–3234. Oxford University Press (OUP).
  • Gomes G.L.B., Scortecci K.C. (2021). Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904. Wiley.
  • Hatfield J.L., Prueger J.H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. Elsevier BV.
  • Leontidou K., Genitsaris S., Papadopoulou A., Kamou N., Bosmali I., Matsi T., Madesis P., Vokou D., Karamanoli K., Mellidou I. (2020). Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Scientific Reports, 10(1), 1–15. Springer Science and Business Media LLC.
  • Naveed M., Qureshi M.A., Zahir Z.A., Hussain M.B., Sessitsch A., Mitter B. (2015). L- Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Annals of Microbiology, 65(3), 1381–1389. Springer Science and Business Media LLC.
  • Radulović O., Stanković S., Uzelac B., Tadić V., Trifunović-Momčilov M., Lozo J., Marković M. (2020). Phenol Removal Capacity of the Common Duckweed (Lemna minor L.) and Six Phenol-Resistant Bacterial Strains From Its Rhizosphere: In Vitro Evaluation at High Phenol Concentrations. Plants, 9(5), 599. MDPI AG.
  • Saini S., Sharma I., Kaur N., Pati, P.K. (2013). Auxin: a master regulator in plant root development.       Plant       cell                                      reports,        32(6),        741–757. https://doi.org/10.1007/s00299-013-1430-5
  • Shah A., Nazari M., Antar M., Msimbira L. A., Naamala J., Lyu D., Rabileh M., Zajonc J., Smith, D.L. (2021). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.667546
  • Sarwar M., Kremer R. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282–285. Wiley.
  • Ullah A., Bano A., Khan N. (2021). Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems, 5. Frontiers Media SA.