THE EFFECT OF ELEVATED CADMIUM CONCENTRATIONS ON THE ANTIOXIDANT ACTIVITY OF LEMON BALM

3rd International Symposium On Biotechnology (2025),  [pp. 571-577]

AUTHOR(S) / АУТОР(И): Denis Mitov, Stefan Petrović, Katarina Milenković, Jelena Mrmošanin, Aleksandra Pavlović, Emilija Pecev-Marinković, Snežana Tošić

Download Full Pdf   

DOI: 10.46793/SBT30.70DM

ABSTRACT / САЖЕТАК:

Lemon balm is a plant widely used today due to its various beneficial effects on human health, with one of its main effects being antioxidant activity. As soil contamination with heavy metals has become increasingly common in recent years, the aim of this study is to examine how increasing cadmium concentrations in a pot experiment affect the antioxidant activity of lemon balm, assessed using ABTS, CUPRAC, and FRAP assays. Lemon balm extraction was performed using 70% methanol. A slight increase in antioxidant activity analyzed with CUPRAC test was observed at lower Cd concentrations in the soil, and for ABTS there is no difference between these samples. However, at 20 mg/kg Cd in the soil, antioxidant activity decreased compared to the reference unit by 15%, 12%, and 6%, as determined by the ABTS, FRAP, and CUPRAC tests, respectively.

KEYWORDS / КЉУЧНЕ РЕЧИ:

lemon balm, antioxidant activity, ABTS, FRAP, CUPRAC

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This research was supported by the Ministry of Science, Technological Development, and Innovation of Republic of Serbia (Contracts No. 451-03- 65/2024-03/200124, 451-03-66/2024-03/200124, 451-03-136/2025-03/200124 and 451-03-137/2025-03/200124).

REFERENCES / ЛИТЕРАТУРА:

  • Adamczyk-Szabela, D., Chrześcijańska, E., Zielenkiewicz, P., Wolf, W. M. (2023). Antioxidant activity and photosynthesis efficiency in Melissa officinalis subjected to heavy metals stress. Molecules, 28(6), 2642.
  • Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International journal of food sciences and nutrition, 57(5-6), 292-304. Arts, M. J., Haenen, G. R., Voss, H. P., & Bast, A. (2004). Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food and Chemical Toxicology, 42(1), 45-49.
  • Benzie, I. F., Strain, J. J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in enzymology (Vol. 299, pp. 15-27). Academic press.
  • Gulcin,  İ.  (2020).  Antioxidants  and  antioxidant  methods:  An  updated overview. Archives of toxicology, 94(3), 651-715.
  • Hmidani, A., Bouhlali, E. D. T., Ajebli, M., Khouya, T., Benlyas, M., Alem, C. (2021). In vitro investigation of antioxidant and antihemolytic activities of three Lamiaceae species from Morocco. Beni-Suef University Journal of Basic and Applied Sciences, 10, 1-8.
  • Ibrahim, M. H., Chee Kong, Y., Mohd Zain, N. A. (2017). Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules, 22(10), 1623.
  • Koksal, E., Bursal, E., Dikici, E., Tozoglu, F., Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research, 5(2), 217-222.
  • Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394.
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 757-772.
  • López-Alarcón, C., Denicola, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica chimica acta, 763, 1-10.
  • Mabrouki, H., Duarte, C. M. M., Akretche, D. E. (2018). Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arabian Journal for Science and Engineering, 43, 3349-3357.
  • Moharram, H. A., Youssef, M. M. (2014). Methods for determining the antioxidant activity: a review. Alexandria Journal of Food Science and Technology, 11(1), 31-42.
  • Murch, S. J., Haq, K., Rupasinghe, H. V., Saxena, P. K. (2003). Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environmental and Experimental Botany, 49(3), 251-257.
  • Ordaz, J. J., Hernández, J. M., Ramírez-Godínez, J., Castañeda-Ovando, A., González-Olivares, L. G., Contreras-López, E. (2018). Bioactive compounds in aqueous extracts of lemon balm (Melissa officinalis) cultivated in Mexico. Arch. latinoam. nutr, 68(3), 268-279.
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Bitto, (2017). Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity, 2017(1), 8416763.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
  • Ulewicz-Magulska, B., Wesolowski, M. (2023). Antioxidant activity of medicinal herbs and spices from plants of the Lamiaceae, Apiaceae and Asteraceae   families:   Chemometric   interpretation   of   the data. Antioxidants, 12(12), 2039.