EVALUATION OF ICP AES METHOD FOR ELEMENT DETERMINATION IN ROSA CORYMBIFERA BORKH. SAMPLES

3rd International Symposium On Biotechnology (2025),  [pp. 561-570]

AUTHOR(S) / АУТОР(И): Katarina Milenković, Jelena Mrmošanin, Denis Mitov, Stefan Petrović, Snežana Tošić, Ivana Rašić Mišić, Aleksandra Pavlović

Download Full Pdf   

DOI: 10.46793/SBT30.69KM

ABSTRACT / САЖЕТАК:

An inductively coupled plasma atomic emission spectrometry (ICP AES) method for determination of 21 elements (Al, As, B, Ba, Ca, Cd, Cr, Co, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Se, V and Zn) in Rosa corymbifera Borkh. samples was optimized and then validated. Robust plasma conditions were reached at a radiofrequency power (RF) of 1150 W and an argon nebulizer flow (NBF) of 0.5 L min-1. All experiments in axial and radial view mode were conducted under these analytical conditions. The validation process included accuracy, precision, and linearity. Certified reference material (LGC7162 strawberry leaves) was used to assess accuracy and precision of the method. Recoveries obtained were from 85.7% to 109%. Correlation coefficient for calibration curves were higher than 0,999. Among the macro elements, the most abundant is K, followed by Ca, P, Mg and Na. Among the micro elements, the most abundant is Si, followed by Fe, Mn, Zn, Cu, Ba, Al, V, Ni and Cr. The concentrations of Pb and Cd in all the analyzed samples were lower than the maximum tolerated level permitted by World Health Organization (WHO).

KEYWORDS / КЉУЧНЕ РЕЧИ:

Rosa corymbifera Borkh., elements, ICP AES, optimization, validation

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This research was supported by the Ministry of Science, Technological Development, and Innovation of Republic of Serbia (Contracts No. 451-03- 47/2023-01/200124, 451-03-65/2024-03/200124, 451-03-66/2024-03/200124, 451-03- 136/2025-03/200124 and 451-03-137/2025-03/200124).

REFERENCES / ЛИТЕРАТУРА:

  • Akram, M., Riaz, M., Munir, N., Akhter, N., Zafar, S., Jabeen, F., … & Said Khan, (2020). Chemical constituents, experimental and clinical pharmacology of Rosa damascena: a literature review. Journal of Pharmacy and Pharmacology, 72(2): 161-174.
  • Al-Yafeai, A., Malarski, A., & Böhm, V. (2018). Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chemistry, 242: 435-442.
  • Barros, L., Carvalho, A. M., & Ferreira, I. C. (2011). Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Research International, 44(7): 2233-2236.
  • Brenner, I. B., & Zander, A. T. (2000). Axially and radially viewed inductively coupled plasmas—a critical review. Spectrochimica Acta Part B: Atomic Spectroscopy, 55(8): 1195-1240.
  • Demir, F., & Özcan, M. (2001). Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey. Journal of Food Engineering, 47(4): 333-336.
  • González A. G, & Herrador M. Á. (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends in Analytical Chemistry, 26(3): 227-238.
  • Heiat, M., Hashemi-Aghdam, M. R., Heiat, F., Rastegar Shariat Panahi, M., Aghamollaei, H., Moosazadeh Moghaddam, M., … & Sahebkar, A. (2021). Integrative role of traditional and modern technologies to combat COVID- 19 Expert Review of Anti-infective Therapy, 19(1): 23-33.
  • Hummer KE, Janick J (2009). Rosaceae: Taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (Eds). Genetics and genomics of Rosaceae. Springer, 1-17.
  • Jiménez, S., Jiménez-Moreno, N., Luquin, A., Laguna, M., Rodríguez-Yoldi, M. J., & Ancín-Azpilicueta, C. (2017). Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for the food industry. Food Additives & Contaminants: Part A, 34(7): 1121-1130.
  • Kazaz, S., BaydaR, H., & ERBaS, S. (2009). Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech Journal of Food Sciences, 27(3): 178-184.
  • Koczka, N., Stefanovits-Bányai, É., & Ombódi, A. (2018). Total polyphenol content  and  antioxidant  capacity  of  rosehips  of  some  Rosa species. Medicines, 5(3): 84.
  • Kovacs, S., Tóth, M. G., & Facsar, G. (1999). Fruit quality of some rose species native in Hungary. In Eucarpia Symposium on Fruit Breeding and Genetics, 538: 103-108.
  • Langhans, W. (2017). Food components in health promotion and disease prevention. Journal of Agricultural and Food Chemistry, 66(10): 2287-2294.
  • Levent A, Alp Ş, Ekin S, Karagoz S (2010). Trace heavy metal contents and mineral of Rosa canina L. Fruits from van region of Eastern Anatolia, Turkey. Reviews in Analytical Chemistry 29(1): 13-24.
  • Mármol, I., Sánchez-de-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., & Rodríguez-Yoldi, M. J. (2017). Therapeutic applications of rose hips from different Rosa species. International Journal of Molecular Sciences, 18(6): 1137.
  • Mermet, J. M. (1991). Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics. Analytica Chimica Acta, 250: 85-94.
  • Milenković, K., Mrmošanin, J., Petrović, S., Mitov, D., Zlatković, B., Mutić, J., & Pavlović, A. (2024). Elemental composition of Rosa L. fruits: Optimization and validation procedure of an ICP AES method. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(4), 13959.
  • Nađpal, J. D., Lesjak, M. M., Šibul, F. S., Anačkov, G. T., Četojević-Simin, D. D., Mimica-Dukić, N. M., & Beara, I. N. (2016). Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chemistry, 192: 907-914.
  • Paunović, D., Kalušević, A., Petrović, T., Urošević, T., Djinović, D., Nedović, V., & Popović-Djordjević, J. (2019). Assessment of chemical and antioxidant properties of fresh and dried rosehip (Rosa canina L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 108-113.
  • Rosu, C. M., Manzu, C., Olteanu, Z., Oprica, L., Oprea, A., Ciornea, E., & Zamfirache, M. M. (2011). Several fruit characteristics of Rosa sp. genotypes from the Northeastern region of Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2): 203-208.
  • Sytar, O., Brestic, M., Hajihashemi, S., Skalicky, M., Kubeš, J., Lamilla-Tamayo, L., … & Landi, M. (2021). COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules, 26(3): 727.
  • Todolí, J. L., & Mermet, J. M. (1998). Minimization of acid effects at low consumption rates in an axially viewed inductively coupled plasma atomic emission spectrometer by using micronebulizer-based sample introduction systems. Journal of Analytical Atomic Spectrometry, 13(8): 727-734.
  • Tolekova, S., Sharmanov, T., Sınyavskıy, Y., Berzhanova, R., Mammadov, R., Aksoy, Ö. K., & Yusifli, R. (2020). Antioxidant, pharmacological, medical properties and chemical content of Rosa L. extracts. International Journal of Secondary Metabolite, 7(3): 200-212.
  • Uggla, M., Gao, X., & Werlemark, G. (2003). Variation among and within dogrose taxa (Rosa sect. caninae) in fruit weight, percentages of fruit flesh and dry matter, and vitamin C content. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 53(3): 147-155.
  • Uggla, M., Gustavsson, K. E., Olsson, M. E., & Nybom, H. (2005). Changes in colour and sugar content in rose hips (Rosa dumalis L. and Rosa rubiginosa L.) during ripening. The Journal of Horticultural Science and Biotechnology, 80(2): 204-208.
  • Yilmaz, S.O., Ercisli, S. (2011). Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Romanian Biotechnological Letters, 16(4): 6407-6411.
  • Zhou, M., Sun, Y., Luo, L., Pan, H., Zhang, Q., & Yu, C. (2023). Road to a bite of rosehip: A comprehensive review of bioactive compounds, biological activities, and industrial applications of fruits. Trends in Food Science & Technology, 136: 76-91.