CREATION OF SYNERGISTIC PHYTOCOMPLEXES: POTENTIAL OF CIRCULAR ECONOMY TO SOLVE TODAY’S CHALLENGES

3rd International Symposium On Biotechnology (2025),  [pp. 399-414]

AUTHOR(S) / АУТОР(И): Vladimir S. Kurćubić, Slaviša Stajić, Nikola Stanišić, Marko Dmitrić, Saša Živković, Matija Munjić, Luka V. Kurćubić

Download Full Pdf   

DOI: 10.46793/SBT30.48VK

ABSTRACT / САЖЕТАК:

Plant material (agri-food by-products and weeds) can be an attractive ingredient or supplement (coctail of synergistic phytocomplexes) for the enrichment or fortification of „clean label“ food or other products. Phytocomplexes can be applied as natural additives in various semi-industrial or industrial processes, thus included in circular economy (CE) with the protection of public health, the environment and the economy. CE supports the development of a sustainable ecosystem, effective consumption of resources, i.e. reducing waste generation through recycling and reuse. The basis of progress lies in innovation and competitiveness, and the benefits of the implementation of the mentioned „bioinitiatives“ are, in addition to preserving the environment, improving the quality of existing foods, creating new, healthier or functional products with desirable techno-functional properties, enriched with the highest level of bioactive substances or reformulated, with a positive repercussion on people’s health.

KEYWORDS / КЉУЧНЕ РЕЧИ:

phytotherapy, synergy, eco-friendly, healthier food, functional food, enriched fooder, one-health

ACKNOWLEDGEMENT / ПРОЈЕКАТ:

This research was funded by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, grant numbers 451-03- 66/2024-03/200088, and 451-03-65/2024-03/200111.

REFERENCES / ЛИТЕРАТУРА:

  • Agarwal M., Rai V., Khatoon S., Mehrotra S. (2014). Effect of microbial load on therapeutically active constituent glycyrrhizin of Glycyrrhiza glabra. Indian Journal of Traditional Knowledge, 13 (2): 319-324.
  • Ahmed Z., Mahmud S., Acet H. (2022). Circular economy model for developing countries: evidence from Bangladesh. Heliyon, 8: e09530 https://doi.org/10.1016/j.heliyon.2022.e09530
  • Akter A., Li X., Grey E., Wang S.C., Kebreab E. (2024). Grape pomace supplementation reduced methane emissions and improved milk quality in lactating dairy cows. Journal of Dairy Science. https://doi.org/10.3168/jds.2024- 25419
  • Almanza-Oliveros A., Bautista-Hernández I., CastroLópez C., Aguilar-Zárate P., Meza-Carranco Z., Rojas R., Michel M.R., Martínez-Ávila G.C.G. (2024). Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods, 13: 580. https://doi.org/10.3390/foods13040580
  • Álvarez–Martínez F.J., Barrajón–Catalán E., Herranz–López M., Micol V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90: 153626. https://doi.org/10.1016/j.phymed.2021.153626
  • Awan U., Sroufe R. (2022). Sustainability in the Circular Economy: Insights and Dynamics of Designing Circular Business Models. Applied Sciences, 12: 1521. https://doi.org/10.3390/app12031521
  • Bhosale R.D., Padmanabhan S. (2021). Evaluation of Microbial Load of Herbal Raw Materials: A Necessary Quality Control Measure to Ensure Safety of Finished Herbal Preparations. Advances in biotechnology & microbiology, 16 (2): AIBM.MS.ID.555934.
  • Brown E.D., Wright G.D. (2016). Antibacterial Drug Discovery in the Resistance Era. Nature, 529: 336–343. https://dx.doi.org/10.1038/nature17042
  • Burak L.C. (2020). The use of elder marc in the food industry. New Technologies, 16 (5): 20-27. (In Russ.) https://doi.org/10.47370/2072-0920-2020-16-5-20-27
  • Caponio G.R., Minervini F., Tamma G., Gambacorta G., De Angelis M. (2023). Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability, 15: 9075. https://doi.org/10.3390/su15119075
  • Chéma F., Fernandez X. (Eds.) La Chimie des Huiles Essentielles: Tradition et Innovation; Vuibert: Paris, France, 2012.
  • Cvetanović A., Editor(s): Victor R. Preedy, Chapter 31 – Sambucus ebulus L., antioxidants and potential in disease, Pathology; Academic Press, 321-333, ISBN 9780128159729, 2020. https://doi.org/10.1016/B978-0-12-815972-9.00031-7
  • Difonzo G., Troilo M., Allegretta I., Pasqualone A., Caponio F. (2023). Grape skin and seed flours as functional ingredients of pizza: Potential and drawbacks related to nutritional, physicochemical and sensory attributes. LWT, 175: 114494. https://doi.org/10.1016/j.lwt.2023.114494
  • Fuentes L.d.l. 2002. Agro-food wastes minimisation and reduction network, in: Waste Management and the Environment. Almorza, D.; Brebbia, C.A.; Sales, D.; Popov, V. (Eds.), WIT Press; Southampton, UK, 305-310.
  • Garcia-Lomillo J., Gonzalez-SanJosé M.L. (2017). Applications of Wine Pomace in the Food Industry: Approaches and Functions. Comprehensive Reviews in Food Science and Food Safety, 16 (1): 3-22. https://doi.org/10.1111/1541-4337.12238
  • Hansen C.L., Cheong D.Y. (2019). Chapter 26 – Agricultural Waste Management in Food Processing, in: Myer Kutz (Eds.), Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition), Academic Press, 673-716.
  • Ianni A., Martino G. (2020). Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods, 9 (2): 168. https://doi.org/10.3390/foods9020168
  • Ivanova D., Tasinov O., Kiselova-Kaneva Y. (2014). Improved lipid profile and increased serum antioxidant capacity in healthy volunteers after Sambucus ebulus L. fruit infusion consumption. International Journal of Food Sciences and Nutrition, 65: 740–744.
  • Jimenez P., Cabrero P., Basterrechea J.E., Tejero J., Cordoba-Diaz D., Cordoba-Diaz M., Girbes T. (2014). Effects of Short-term Heating on Total Polyphenols, Anthocyanins, Antioxidant Activity and Lectins of Different Parts of Dwarf Elder (Sambucus ebulus L.). Plant Foods for Human Nutrition, 69: 168-174. https://doi.org/10.1007/s11130-014-0417-x
  • Kalli E., Lappa I., Bouchagier P., Tarantilis P.A., Skotti E. (2018). Novel application and industrial exploitation of winery by-products. Bioresources and Bioprocessing, 5: 46. https://doi.org/10.1186/s40643-018-0232-6
  • Kayikci Y., Kazancoglu Y., Gozacan-Chase N., Lafci C. (2022). Analyzing the drivers of smart sustainable circular supply chain for sustainable development goals through stakeholder theory. Business Strategy and the Environment: 1–19.  https://doi.org/10.1002/bse.3087
  • Kiss T., Szabó A., Oszlánczi G., Lukács A., Tímár Z., Tiszlavicz L., Csupor D. (2017) Repeated-dose toxicity of common ragweed on rats. PLoS ONE 12 (5): e0176818. https://doi.org/10.1371/journal.pone.0176818
  • Kozuharova E., Ionkova I., Raimondo F.M. (2019). Invasive alien species: potential cheap resources of plant substances for medicinal use. Flora Mediterranea, 29: 13-25. https://doi.org/10.7320/FlMedit29.013
  • Kurćubić V.S., Stajić S.B., Dmitrić M.P., Miletić N.M. (2022). Food safety assessment of burger patties with added herbal plant material. Fleischwirtschaft, 11: 73-78. ISSN 0015-363X
  • Kurćubić V., Stajić S., Miletić N., Stanišić N. Healthier food is fashionable – consumers love fashion. Applied Sciences, 12(19): 10129. https://doi.org/10.3390/app121910129
  • Kurćubić V.S., Raketić S.V., Mašković J.M., Mašković P.Z., Kurćubić L.V., Heinz, V., Tomasevic I.B. (2023). Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. Plants, 12: 3236. https://doi.org/10.3390/plants12183236
  • Kurćubić V.S., Đurović V., Stajić S.B., Dmitrić M., Živković S., Kurćubić L.V., Mašković P.Z., Mašković J., Mitić M., Živković V., Jakovljević V. (2024a). Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power. Antibiotics, 13 (10): 980. https://doi.org/10.3390/antibiotics13100980
  • Kurćubić V.S., Stanišić N., Stajić S.B., Dmitrić M., Živković S., Kurćubić L.V., Živković V., Jakovljević V., Mašković P.Z., Mašković J. (2024b). Valorizing Grape Pomace: A Review of Applications, Nutritional Benefits, and Potential in Functional         Food Development. Foods, 13(24): 4169. https://doi.org/10.3390/foods13244169
  • Liang J., Huang X., Ma G. (2022). Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Advances, 12: 29197. https://doi.org/10.1039/d2ra02389j
  • Mihajlovic L., Radosavljevic J., Burazer L., Smiljanic K., Velickovic Cirkovic T., (2015). Composition of polyphenol and polyamide compounds in common ragweed (Ambrosia artemisiifolia L.) pollen and sub-pollen particles, Phytochemistry, 109: 126-129. https://doi.org/10.5281/zenodo.10522626
  • Molosse V.L., Deolindo G.L., Lago R.V.P., Cécere B.G.O., Zotti C.A., Vedovato M., Copetti P.M., Fracasso M., Morsch V.M., Xavier A.C.H., Wagner R., da Silva A.S. (2023). The effects of the inclusion of ensiled and dehydrated grape pomace in beef cattle diet: Growth performance, health, and economic viability. Animal Feed Science and Technology, 302: 115671. https://doi.org/10.1016/j.anifeedsci.2023.115671
  • Mourtzinos I., Goula A. Polyphenols in Agricultural Byproducts and Food Waste. In: Watson R.R., editor. Polyphenols in Plants: Isolation, Purification and Extract Preparation. 2nd ed. Academic Press; London, UK: 2019. pp. 23–44.
  • Nedić N., Tadić T., Marković B., Nastasović A., Popović A., Bulatović S. (2024). Eco- Friendly Green Approach to the Biosorption of Hazardous Dyes from Aqueous Solution on Ragweed (Ambrosia artemisiifolia) Biomass. Separations, 11 (11): 310. https://doi.org/10.3390/separations11110310
  • Ogunkunle N.F., Adeniyi N.O., Simpson M.D. (2024). The Use of Pomace as Animal Feed: A Review of Grape and Tomato Pomace. Journal of Agricultural Science, 16 (10): 1-10. https://doi.org/10.5539/jas.v16n10p1
  • Parkhomenko A.Y., Andreeva O.A., Oganesyan E.T., Ivashev M.N. (2005). Ambrosia artemisiifolia as a Source of Biologically Active Substances. Pharmaceutical Chemistry Journal, 39: 149–153. https://doi.org/10.1007/s11094-005-0106-z
  • Patwa N., Sivarajah U., Seetharaman A., Sarkar S., Maiti K., Hingorani K. (2021). Towards a circular economy: An emerging economies context. Journal of Business Research, 122: 725–735. https://doi.org/10.1016/j.jbusres.2020.05.015
  • Salehzadeh A., Asadpour L., Naeemi A.S. (2014). Houshmand, E. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. Journal of Traditional and Complementary Medicine, 11: 38–40.
  • Senica M., Stampar F., Mikulic-Petkovsek M. (2019). Harmful (cyanogenic glycoside) and beneficial (phenolic) compounds in different Sambucus species. Journal of Berry Research, 9 (3): 395-409. https://doi.org/10.3233/JBR-180369
  • Sixt M., Strube J. (2018). Systematic Design and Evaluation of an Extraction Process for Traditionally Used Herbal Medicine on the Example of Hawthorn (Crataegus monogyna JACQ.). Processes, 6: 73. https://doi.org/10.3390/pr6070073
  • Song L., Hu X., Ren X., Liu J., Liu X. (2022). Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Frontiers in pharmacolоgy, 13: 873374. https://doi.org/10.3389/fphar.2022.873374
  • Soni V., Raizada P., Singh P., Cuong H.N., Rangabhashiyam S., Saini A., Saini R.V., Van Le Q., Nadda A.K., Le T.-T., Nguyen V.-N. (2021). Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. Environmental Research, 202: 111622. https://doi.org/10.1016/j.envres.2021.111622
  • Street R.A., Stirk W.A., Van Staden J. (2008). South African traditional medicinal plant trade – challenges in regulating quality, safety and efficacy. Journal of Ethnopharmacology, 119: 705-710. https://doi.org/10.1016/j.jep.2008.06.019
  • Teixeira A., Baenas N., Dominguez-Perles R., Barros A., Rosa E., Moreno D.A., Garcia-Viguera C. (2014). Natural bioactive compounds from winery by- products as health promoters: A review. International Journal of Molecular Sciences, 15: 15638–15678. https://doi.org/10.3390/ijms150915638
  • Theuretzbacher U., Outterson K., Engel A., Karlén A. (2020). The Global Preclinical Antibacterial Pipeline. Nature Reviews Microbiology, 18: 275–282. https://doi.org/10.1038/s41579–019–0288–0
  • Uhlenbrock L., Sixt M., Tegtmeie M., Schulz H., Hagels H., Ditz R., Strube J. (2018). Natural Products Extraction of the Future—Sustainable Manufacturing Solutions for Societal Needs. Processes, 6: 177. https://doi.org/10.3390/pr6100177
  • Uhlenbrock L., Ditz R., Strube J. (2019). Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules, 24 (10): 1853 https://doi.org/10.3390/molecules24101853
  • Watson R.R., editor. Polyphenols in Plants. Isolation, Purification and Extract Preparation. 2nd ed. Academic Press; London, UK: 2019.
  • WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food- Producing Animals, Geneva: World Health Organization, 2017.
  • Xu J. (2023). Harnessing the Power of Plants: A Green Factory for Bioactive Compounds. Life, 13: 2041. https://doi.org/10.3390/life13102041
  • Yesilada E., Gürbüz I., Toker G. (2014). Anti-ulcerogenic activity and isolation of the active principles from Sambucus ebulus L. leaves. J. Ethnopharmacology, 153: 478– 483.