RESPIROMETRIC ANALYSIS FOR MONITORING MICROBIAL ACTIVITY DURING TEREPHTHALIC ACID TRANSFORMATION

3rd International Symposium On Biotechnology (2025),  [pp. 357-362]

AUTHOR(S) / AUTOR(I): Marija Lješević, Kristina Joksimović, Aleksandra Žerađanin, Branka Lončarević, Natalija Petronijević, Vladimir Beškoski, Jasmina Nikodinović-Runić

Download Full Pdf   

DOI: 10.46793/SBT30.43ML

ABSTRACT / SAŽETAK:

Plastic pollution is a major challenge, with polyethylene terephthalate (PET) among the most prevalent. Terephthalic acid (TPA), a key monomer from PET depolymerization, can be toxic and persistent, posing environmental risks. However, some microbial species have demonstrated the ability to utilize TPA, opening avenues for bioremediation and recycling. This work investigates microbial consortium and pure microbial strains isolated from polluted soil and sediment to transform TPA. Microbial activity was monitored using a respirometer, and TPA transformation using HPLC. Elucidating pathways for TPA breakdown can enhance bioremediation processes and promote sustainable plastic waste management.

KEYWORDS / KLJUČNE REČI:

PET, therephtalic acid, microorgansms, respirometer, transformation

ACKNOWLEDGEMENT / PROJEKAT:

This work is supported by the EU within the Horizon 2020 program (number 870292, BioICEP) and Ministry of Education, Science, and Technological Development of the Republic of Serbia (number: 451-03-66/2024- 03/200026 and 451-03-66/2024-03/200168).

REFERENCES / LITERATURA:

  • Fukuhara Y., Kasai D., Katayama Y., Fukuda M., & Masai E. (2008). Enzymatic Properties of Terephthalate 1,2-Dioxygenase of Comamonas sp. Strain E6. Bioscience, Biotechnology, and Biochemistry, 72(9), 2335–2341.
  • Gao R., Pan H., Kai L. Han K., Lian J. (2022). Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World Journal of Microbiology and Biotechnology 38, 89.
  • Ghasemi M.H., Neekzad N., Ajdari F.B., Kowsari E., Ramakrishna S. (2021). Mechanistic aspects of poly(ethylene terephthalate) recycling–toward enabling high quality sustainability decisions in waste management. Environ Sci Pollut Res 28, 43074–43101.
  • Ion S., Voicea S., Sora C., Gheorghita G., Tudorache M., Parvulescu M.I. (2021). Sequential biocatalytic decomposition of BHET as valuable intermediator of PET recycling strategy, Catalysis Today, 366, 177-184.
  • Kosiorowska K. E., Biniarz P, Dobrowolski A, Leluk K, Mirończuk A. M. (2022). Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation, Science of The Total Environment, 831, 154841.
  • Maurya A., Bhattacharya A., Khare S. K. (2020). Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview, Frontiers in Bioengineering and Biotechnology 8,1.
  • Roberts C., Edwards S., Vague M., León-Zayas R., Scheffer H., Chan G., Swartz A., Mellies J. L. (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. mSphere 5:10.1128/msphere.01151-20.
  • Yan ZF., Wang L., Xia W. et al. (2021). Synergistic biodegradation of poly(ethylene  terephthalate)  using  Microbacterium  oleivorans  and Thermobifida fusca cutinase. Applied Microbiology and Biotechnoly 105, 4551–4560.
  • Yastrebova O.V., Malysheva A.A., Plotnikova E.G. (2022). Halotolerant Terephthalic Acid-Degrading Bacteria of the Genus Glutamicibacter. Appl Biochem Microbiol 58, 590–597.