АУТОР(И) / AUTHOR(S): Nikola Rakić, Vanja Šušteršič, Natalija Aleksić, Nebojša Jurišević, Dušan Gordić
DOI: 10.46793/EEE24-3.01R
САЖЕТАК / ABSTRACT:
Savremene tehnologije za tretiranje organskog otpada ubrajaju postupak ko-/digestije kao jedan od osnovnih. Ovaj rad daje pregled izvedenih ispitivanja na međunarodnom nivou, teorijske osnove i ključne parametre procesa ko-/digestije zaključno sa postavljenim i obavljenim eksperimentom. Ko-/digestija je predstavljena kao proces kojim se gotovo jednoznačno tretira kanalizacioni mulj ili životinjski stajnjak kao primarna podloga, i dodatni biorazgradivi materijal koji služi kao ko-supstrat. Zabeležen je širok opseg prinosa biogasa, od 118 ml CH4/g VS do 1040 ml CH4/g VS, za različite odnose inokulum/supstrat i supstrat/ko-supstrat. Navedeni su elementi standardnog protokola i osnovne faze anaerobne digestije. Teorijske postavke su obuhvatile parametre, inhibitorne supstance i predtretmane. Eksperimentalna procedura je sprovedena bazičnom opremom i standardnim metodama. Primarni kanalizacioni mulj i otpad od hrane su ispitivani u 4 različita odnosa (1/0; 3/1; 1/1; 1/3). Primećen je porast proizvodnje sa povećanjem udela ostataka hrane, dok je najstabilniji rad pokazala proporcija 1/1. Kod ko-digestija potvrđeni su sinergijski efekti od 7,1%, 12,8% i 17%, respektivno. Dokazano je da dodatak biorazgradivog otpada pozitivno utiče na prinos biogasa.
КЉУЧНЕ РЕЧИ / KEYWORDS:
ko-/digestija, kanalizacioni mulj, otpad od hrane, biogas, sinergija
ЛИТЕРАТУРА / REFERENCES:
- Rehl, T., Müller, J. Life cycle assessment of biogas digestate processing technologies, Resources, Conservation and Recycling, 56, No. 1, pp. 92–104, 2011 https://doi.org/10.1016/j.resconrec.2011.08.007
- Zhang, Q., Hu, J., Lee, D. J. Biogas from anaerobic digestion processes: Research updates, Renewable Energy, Vol. 98, pp. 108–119, 2016. https://doi.org/10.1016/j.renene.2016.02.029
- Li, C. Using Anaerobic Co-Digestion With Addition of Municipal Organic Wastes and Pre-Treatment To Enhance Biogas Production From Wastewater, Queen’s University Kingston, Ontario, Canada, 2012. https://doi.org/10.2166/wst.2013.738
- Li, M. S. C. Wet and Dry Anaerobic Digestion of Biowaste and of Co-substrates, Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Karlsruher Instituts für Technologie (KIT), 2015. https://d-nb.info/1068263415/34 [pristupljeno 15.04.2024]
- Zhang, C., Su, H., Baeyens, J., Tan, T. Reviewing the anaerobic digestion of food waste for biogas production, Renewable and Sustainable Energy Reviews, Vol. 38, pp. 383–392, 2014. https://doi.org/10.1016/j.rser.2014.05.038
- Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013, Renewable and Sustainable Energy Reviews, Vol. 36, pp. 412–427, 2014. https://doi.org/10.1016/j.rser.2014.04.03
- Maragkaki, A. E., Fountoulakis, M., Gypakis, A., Kyriakou, A., Lasaridi, K., Manios, T. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants, Waste Management, Vol. 59, pp. 362–370, 2017. https://doi.org/10.1016/j.wasman.2016.10.043
- Lisboa, M. S., Lansing, S. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments, Waste Management, Vol. 33, No. 12, pp. 2664-2669, 2013. https://doi.org/10.1016/j.wasman.2013.09.004
- Hallaji, S. M., Kuroshkarim, M., Moussavi, S. P. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey, BMC Biotechnology, Vol 19, No. 19, 2019. https://doi.org/10.1186/s12896-019-0513-y
- Ebner, J. H., Labatut, R. A., Lodge, J. S., Williamson, A. A., Trabold, T. A. Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects, Waste Management, Vol. 52, pp. 286-294, 2016. https://doi.org/10.1016/j.wasman.2016.03.046
- Xie, S., Wickham, R., Nghiem, L. D. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes, International Biodeterioration and Biodegradation, Vol. 116, pp. 191-197, 2017. https://doi.org/10.1016/j.ibiod.2016.10.037
- Ohemeng-Ntiamoah, J., Datta, T. Evaluating analytical methods for the characterization of lipids, proteins and carbohydrates in organic substrates for anaerobic co-digestion, Bioresource Technology, Vol. 247, pp. 697-704, 2018. https://doi.org/10.1016/j.biortech.2017.09.154
- Naran, E., Toor, U. A., Kim, D. J. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production, International Biodeterioration and Biodegradation, Vol. 113, pp. 17-21, 2016. https://doi.org/10.1016/j.ibiod.2016.04.011
- Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J. B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Water Science and Technology, Vol. 59, No. 5, pp. 927-934, 2009. https://doi.org/10.2166/wst.2009.040
- Neves, L., Oliveira, R., Alves, M. M. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios, Process Biochemistry, Vol. 39, No. 12, pp. 2019-2024, 2004. https://doi.org/10.1016/j.procbio.2003.10.002
- Zhang, L., Jahng, D. Long-term anaerobic digestion of food waste stabilized by trace elements, Waste Management, Vol. 32, No. 8, pp. 1509-1515, 2012. https://doi.org/10.1016/j.wasman.2012.03.015
- Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G. Biomethane production by anaerobic digestion of organic waste, Fuel, Vol. 103, pp. 1003-1009, 2013. https://doi.org/10.1016/j.fuel.2012.07.070
- Kusch, S., Schumacher, B., Oechsner, H., Schäfer, W. Methane yield of oat husks, Biomass and Bioenergy, Vol. 35, No. 7, pp. 2627-2633, 2011. https://doi.org/10.1016/j.biombioe.2011.02.044
- Sung, S., Liu, T. Ammonia inhibition on thermophilic anaerobic digestion, Chemosphere, Vol. 53, No. 1, pp. 43-52, 2003. https://doi.org/10.1016/S0045-6535(03)00434-X
- Meroney, R. N., Colorado, P. E. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks, Water Research, Vol. 43, No. 4, pp 1040-1050, 2009. https://doi.org/10.1016/j.watres.2008.11.035
- Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies, Bioresource Technology, Vol. 99, No. 11, pp. 4919-4928, 2008. https://doi.org/10.1016/j.biortech.2007.09.015
- Appels, L., Baeyens, J., Degrève, J., Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge, Progress in Energy and Combustion Science, Vol. 34, No. 6, pp. 755-781, 2008. https://doi.org/10.1016/j.pecs.2008.06.002
- Cazaudehore, G., Schraauwers, B., Peyrelasse, C., Lagnet, C., Monlau, F. Determination of chemical oxygen demand of agricultural wastes by combining acid hydrolysis and commercial COD kit analysis, Journal of Environmental Management, Vol. 250, pp. 109464, 2019. https://doi.org/10.1016/j.jenvman.2019.109464
- Chen, Y., Cheng, J. J., Creamer, K. S. Inhibition of anaerobic digestion process: A review, Bioresource Technology, Vol. 99, No. 10, pp. 4044-4064, 2008. https://doi.org/10.1016/j.biortech.2007.01.057
- Izumi, K., Okishio, Y. ki, Nagao, N., Niwa, C., Yamamoto, S., Toda, T. Effects of particle size on anaerobic digestion of food waste, International Biodeterioration and Biodegradation, Vol. 64, No. 7, pp. 601-608, 2010. https://doi.org/10.1016/j.ibiod.2010.06.013
- Bougrier, C., Albasi, C., Delgenès, J. P., Carrère, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability, Chemical Engineering and Processing: Process Intensification, Vol. 45, No. 8, pp. 711-718, 2006. https://doi.org/10.1016/j.cep.2006.02.005
- Rakić. N., Šušteršič. V., Gordić. D., Josijević. M., Jurišević. N., Nikolić. J., Inoculum to substrate ratio: Calculating methods, in Proc. 35th International scientific conference Energetika 2020, Zlatibor, Serbia, pp. 285-291, 24-77 Jun 2020.
- Rakić, N. Povećanje energetske efikasnosti u postrojenjima za tretman otpadnih voda optimizacijom procesa kodigestije, Fakultet inženjerskih nauka, Kragujevac, 2023.
- Angelidaki, I., Sanders, W. Assessment of the anaerobic biodegradability of macropollutants, Reviews in Environmental Science and Biotechnology, Vol. 3, No. 2, pp. 117–129, 2004. https://doi.org/10.1007/s11157-004-2502-3