АУТОР(И): Katarina Obradović, Goran Dobrić
Е-АДРЕСА: obradovic15@gmail.com
Download Full Pdf
DOI: 10.46793/EEE22-4.22O
САЖЕТАК:
Proces energetske tranzicije podrazumeva i veći udeo proizvodnje iz intermitentnih obnovljivih izvora energije povezanih na elektroenergetski sistem (EES), koji u kratkom periodu mogu da promene proizvodnju i tako utiču na naponske prilike i tokove snaga u sistemu. To pred EES postavlja dodatan izazov u postizanju zahtevane pouzdanosti i stabilnosti u radu. Dobar i blagovremen uvid u trenutno stanje električnih parametara mreže igra važnu ulogu u takvim uslovima. Ugradnjom sinhrofazorskih jedinica, odnosno PMU (Phasor Measurement Unit) uređaja, omogućava se da podaci o električnim veličinama čvorova budu vremenski usklađeni sa mikrosekundnom preciznošću obezbeđujući kontrolisanje čak i dinamičkih procesa EES-a u realnom vremenu.
S obzirom da PMU može pored informacije o fazoru napona u posmatranom čvoru da dâ i informacije o strujama incidentnih grana, moguće je postići opservabilnost sistema čak i ako ne poseduje svaki čvor svoj PMU. Ugradnja PMU uređaja u svaki čvor EES-a ne predstavlja ekonomično rešenje s obzirom na veličinu mreže i broj potrebnih jedinica u tom slučaju. Stoga, neophodno je pažljivo pristupiti određivanju potrebnog i dovoljnog broja PMU-a i njihovom pogodnom lociranju kako bi opservabilnost sistema bila zadržana, a troškovi umanjeni što je više moguće.
U okolnostima kada postoji veliki broj čvorova i grana u modelovanoj mreži, korišćenjem metaheurističkih optimizacionih metoda uz odgovarajuću kriterijumsku funkciju i što preciznije definisana ograničenja može da se smanji računarska kompleksnost algoritma u odnosu na metode linearnog i nelinearnog programiranja, bez značajnog uticaja na kvalitet predloženog rešenja. U ovom radu analizirano je korišćenje genetičkog optimizacionog algoritma sa ciljem određivanja pozicije i broja neophodnih PMU uređaja na primeru nekoliko različitih modela mreža.
КЉУЧНЕ РЕЧИ:
PMU (phasor measurement units), optimizacija lociranja PMU, genetički algoritam
ЛИТЕРАТУРА:
- Aweya, J., Al Sindi, N. Role of Time Synchronization in Power System Automation and Smart Grids, in Proc. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, pp. 1392-1397, 25-28 February 2013. https://doi.org/10.1109/ICIT.2013.6505875
- Patil, G. C., Thosar, A. G. Application of synchrophasor measurements using PMU for modern power systems monitoring and control, in Proc. 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, pp. 754-760, 22-23 March 2017. https://doi.org/10.1109/ICCPEIC.2017.8290464
- Bečejac, V. Optimalna postavka sinhrofazorskih uređaja za obezbeđenje potpune topološke opservabilnosti primenom metode Grebnerove baze, Elektrotehnički fakultet, Beograd, 2020.
- Noureen, S.S., Roy, V., Bayne, S. B. Phasor Measurement Unit Integration: A Review on Optimal PMU Placement Methods in Power System, in Proc. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Polashi Dhaka, Dhaka, Bangladesh, pp. 328-332, 21-23 December 2017. http://dx.doi.org/10.1109/R10-HTC.2017.8288967
- Almunif A, Fan L. Optimal PMU placement for modeling power grid observability with mathematical programming methods, Intentational Transactions on Electrical Energy Systems, e12182, 2019. https://doi.org/10.1002/2050-7038.12182
- Allagui, B., Ben Aribia, H., Hadj Abdallah, H. Optimal placement of Phasor Measurement Units by genetic algorithm, in Proc. 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia, pp. 434-439, 26-28 March 2012. https://doi.org/10.1109/REVET.2012.6195309
- Babu, R., Bhattacharyya, B. Optimal placement of phasor measurement unit using binary particle swarm optimization in connected power network, in Proc. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), Allahabad, India, pp. 1-5, 04-06 December 2015. https://doi.org/10.1109/UPCON.2015.7456695
- Mesgarnejad, H., Shahrtash, S. M. Multi-objective measurement placement with new parallel Tabu Search method, in Proc. 2008 IEEE Canada Electric Power Conference, Vancouver, BC, Canada, 06-07 October 2008. https://doi.org/10.1109/EPC.2008.4763294
- Aminifar, F., Lucas, C., Khodaei, A., Fotuhi-Firuzabad, M. Optimal Placement of Phasor Measurement Units Using Immunity Genetic Algorithm, IEEE Transactions on Power Delivery, Vol. 24, No. 3, pp. 1014-1020, 2009. https://doi.org/10.1109/TPWRD.2009.2014030
- Gopakumar, P., Reddy, M. J. B., Mohanta, D. K. Novel multi-stage simulated annealing for optimal placement of PMUs in conjunction with conventional measurements, in Proc. 2013 12th International Conference on Environment and Electrical Engineering, Wroclaw, Poland, pp. 248-252, 05-08 May 2013. https://doi.org/10.1109/EEEIC.2013.6549625
- Abdulkaarem, A., Ogbe, D., Somefun, T., Agbetuyi, F. Optimal PMU Placement Using Genetic Algorithm for 330kV 52-Bus Nigerian Network, Advances in Science, Technology and Engineering Systems Journal, Vol. 6, No. 1, pp. 597-604, 2021. http://dx.doi.org/10.25046/aj060164
- Mitchell, M. An introduction to genetic algorithms. MIT press, 1998.
- Marín, F.J., García-Lagos, F., Joya, G., Sandoval, F. Genetic algorithms for optimal placement of phasor measurement units in electrical networks, Electronics Letters, Vol. 39, No. 19, pp. 1403-1405. 2003. https://doi.org/10.1049/EL%3A20030919
- Chakrabarti, S., Kyriakides, E. Optimal Placement of Phasor Measurement Units for Power System Observability, IEEE Transactions on Power Systems, Vol. 23, No. 3, pp. 1433-1440, 2008. https://doi.org/10.1109/TPWRS.2008.922621